Python Pandas list列表数据列拆分成多行的方法实现
(编辑:jimmy 日期: 2025/1/10 浏览:3 次 )
1、实现的效果
示例代码:
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]}) df Out[458]: A B 0 1 [1, 2] 1 2 [1, 2]
拆分成多行的效果:
A B
0 1 1
1 1 2
3 2 1
4 2 2
2、拆分成多行的方法
1)通过apply和pd.Series实现
容易理解,但在性能方面不推荐。
df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'}) Out[463]: A B 0 1 1 1 1 2 0 2 1 1 2 2
2)使用repeat和DataFrame构造函数
性能可以,但不太适合多列
df=pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)}) df Out[465]: A B 0 1 1 0 1 2 1 2 1 1 2 2
或者
s=pd.DataFrame({'B':np.concatenate(df.B.values)},index=df.index.repeat(df.B.str.len())) s.join(df.drop('B',1),how='left') Out[477]: B A 0 1 1 0 2 1 1 1 2 1 2 2
3)创建新的列表
pd.DataFrame([[x] + [z] for x, y in df.values for z in y],columns=df.columns) Out[488]: A B 0 1 1 1 1 2 2 2 1 3 2 2
或者
#拆成多于两列的情况 s=pd.DataFrame([[x] + [z] for x, y in zip(df.index,df.B) for z in y]) s.merge(df,left_on=0,right_index=True) Out[491]: 0 1 A B 0 0 1 1 [1, 2] 1 0 2 1 [1, 2] 2 1 1 2 [1, 2] 3 1 2 2 [1, 2]
4)使用reindex和loc实现
df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values)) Out[554]: A B 0 1 1 0 1 2 1 2 1 1 2 2 #df.loc[df.index.repeat(df.B.str.len())].assign(B=np.concatenate(df.B.values)
5)使用numpy高性能实现
newvalues=np.dstack((np.repeat(df.A.values,list(map(len,df.B.values))),np.concatenate(df.B.values))) pd.DataFrame(data=newvalues[0],columns=df.columns) A B 0 1 1 1 1 2 2 2 1 3 2 2
下一篇:python中time、datetime模块的使用