脚本专栏 
首页 > 脚本专栏 > 浏览文章

如何基于matlab相机标定导出xml文件

(编辑:jimmy 日期: 2025/1/11 浏览:3 次 )

1 参数选择 径向畸变3个参数还是两个参数

默认两个参数

如何基于matlab相机标定导出xml文件

如果是三个参数

如何基于matlab相机标定导出xml文件

2准备转化生成结果

如何基于matlab相机标定导出xml文件

如何基于matlab相机标定导出xml文件

二参数的转化代码

writeExternalandIntrinsicMatrix(cameraParams62,'cameraParams622.xml');

如何基于matlab相机标定导出xml文件

function writeExternalandIntrinsicMatrix(cameraParams,file)
%writeXML(cameraParams,file)
 
docNode = com.mathworks.xml.XMLUtils.createDocument('opencv_storage');
docRootNode = docNode.getDocumentElement;
IntrinsicMatrix = ((cameraParams.IntrinsicMatrix)');
 
TangentialDistortion =cameraParams.TangentialDistortion;
%Distortion = [cameraParams.RadialDistortion(1:2),TangentialDistortion, cameraParams.RadialDistortion(3)];
Distortion = [cameraParams.RadialDistortion(1:2),TangentialDistortion,0];
FocalLength = cameraParams.FocalLength;
camera_matrix = docNode.createElement('IntrinsicCam'); %锟斤拷锟斤拷mat锟节碉拷
camera_matrix.setAttribute('type_id','opencv-matrix'); %锟斤拷锟斤拷mat锟节碉拷锟斤拷锟斤拷
rows = docNode.createElement('rows'); %锟斤拷锟斤拷锟叫节碉拷
rows.appendChild(docNode.createTextNode(sprintf('%d',3))); %锟斤拷锟斤拷锟侥憋拷锟节点,锟斤拷锟斤拷为锟叫碉拷锟接节碉拷
camera_matrix.appendChild(rows); %锟斤拷锟叫节碉拷锟斤拷为mat锟接节碉拷
 
cols = docNode.createElement('cols');
cols.appendChild(docNode.createTextNode(sprintf('%d',3)));
camera_matrix.appendChild(cols);
 
dt = docNode.createElement('dt');
dt.appendChild(docNode.createTextNode('d'));
camera_matrix.appendChild(dt);
 
data = docNode.createElement('data');
for i=1:3
  for j=1:3
    data.appendChild(docNode.createTextNode(sprintf('%.16f ',IntrinsicMatrix(i,j))));
  end
  data.appendChild(docNode.createTextNode(sprintf('\n')));
end
camera_matrix.appendChild(data);
docRootNode.appendChild(camera_matrix);
 
distortion = docNode.createElement('DistortionCam');
distortion.setAttribute('type_id','opencv-matrix');
rows = docNode.createElement('rows');
rows.appendChild(docNode.createTextNode(sprintf('%d',1)));
distortion.appendChild(rows);
 
cols = docNode.createElement('cols');
cols.appendChild(docNode.createTextNode(sprintf('%d',5)));
distortion.appendChild(cols);
 
dt = docNode.createElement('dt');
dt.appendChild(docNode.createTextNode('d'));
distortion.appendChild(dt);
data = docNode.createElement('data');
for i=1:5
   data.appendChild(docNode.createTextNode(sprintf('%.16f ',Distortion(i))));
end
distortion.appendChild(data);
docRootNode.appendChild(distortion);
 
 
focalLength = docNode.createElement('FocalLength');
focalLength.setAttribute('type_id','opencv-matrix');
rows = docNode.createElement('rows');
rows.appendChild(docNode.createTextNode(sprintf('%d',1)));
focalLength.appendChild(rows);
cols = docNode.createElement('cols');
cols.appendChild(docNode.createTextNode(sprintf('%d',1)));
focalLength.appendChild(cols);
dt = docNode.createElement('dt');
dt.appendChild(docNode.createTextNode('d'));
focalLength.appendChild(dt);
data = docNode.createElement('data');
for i=1:1
   data.appendChild(docNode.createTextNode(sprintf('%.16f ',FocalLength(i))));
end
focalLength.appendChild(data);
docRootNode.appendChild(focalLength);
 
% distortion = docNode.createElement('Pmatrix');
% distortion.setAttribute('type_id','opencv-matrix');
% rows = docNode.createElement('rows');
% rows.appendChild(docNode.createTextNode(sprintf('%d',1)));
% distortion.appendChild(rows);
%
% cols = docNode.createElement('cols');
% cols.appendChild(docNode.createTextNode(sprintf('%d',4)));
% distortion.appendChild(cols);
%
% dt = docNode.createElement('dt');
% dt.appendChild(docNode.createTextNode('d'));
% distortion.appendChild(dt);
% data = docNode.createElement('data');
% for i=1:4
%    data.appendChild(docNode.createTextNode(sprintf('%.16f ',Distortion(i))));
% end
% distortion.appendChild(data);
% docRootNode.appendChild(distortion);
 
 
xmlFileName = file;
xmlwrite(xmlFileName,docNode);
end

二参数的保存结果

<"1.0" encoding="utf-8"?>
<opencv_storage>
  <IntrinsicCam type_id="opencv-matrix">
   <rows>3</rows>
   <cols>3</cols>
   <dt>d</dt>
   <data>1558.5669994681102253 0.0000000000000000 821.5211092415044050
0.0000000000000000 1557.8077127262038175 460.9748043702705331
0.0000000000000000 0.0000000000000000 1.0000000000000000
</data>
  </IntrinsicCam>
  <DistortionCam type_id="opencv-matrix">
   <rows>1</rows>
   <cols>5</cols>
   <dt>d</dt>
   <data>-0.1873006682834817 0.0171597428423078 0.0000000000000000 0.0000000000000000 0.0000000000000000 </data>
  </DistortionCam>
  <FocalLength type_id="opencv-matrix">
   <rows>1</rows>
   <cols>1</cols>
   <dt>d</dt>
   <data>1558.5669994681102253 </data>
  </FocalLength>
</opencv_storage>

三参数的转化代码

function writeXML(cameraParams,file)
%writeXML(cameraParams,file)
%功能:将相机校正的参数保存为xml文件
%输入:
%cameraParams:相机校正数据结构
%file:xml文件名
%说明在xml文件是由一层层的节点组成的。
%首先创建父节点 fatherNode,
%然后创建子节点 childNode=docNode.createElement(childNodeName),
%再将子节点添加到父节点 fatherNode.appendChild(childNode)
docNode = com.mathworks.xml.XMLUtils.createDocument('opencv_storage'); %创建xml文件对象
docRootNode = docNode.getDocumentElement; %获取根节点
 
IntrinsicMatrix = (cameraParams.IntrinsicMatrix)'; %相机内参矩阵
RadialDistortion = cameraParams.RadialDistortion; %相机径向畸变参数向量1*3
TangentialDistortion =cameraParams.TangentialDistortion; %相机切向畸变向量1*2
  Distortion = [RadialDistortion(1:2),TangentialDistortion,RadialDistortion(3)]; %构成opencv中的畸变系数向量[k1,k2,p1,p2,k3]
 
camera_matrix = docNode.createElement('camera-matrix'); %创建mat节点
camera_matrix.setAttribute('type_id','opencv-matrix'); %设置mat节点属性
rows = docNode.createElement('rows'); %创建行节点
rows.appendChild(docNode.createTextNode(sprintf('%d',3))); %创建文本节点,并作为行的子节点
camera_matrix.appendChild(rows); %将行节点作为mat子节点
 
cols = docNode.createElement('cols');
cols.appendChild(docNode.createTextNode(sprintf('%d',3)));
camera_matrix.appendChild(cols);
 
dt = docNode.createElement('dt');
dt.appendChild(docNode.createTextNode('d'));
camera_matrix.appendChild(dt);
 
data = docNode.createElement('data');
for i=1:3
  for j=1:3
    data.appendChild(docNode.createTextNode(sprintf('%.16f ',IntrinsicMatrix(i,j))));
  end
  data.appendChild(docNode.createTextNode(sprintf('\n')));
end
camera_matrix.appendChild(data);
docRootNode.appendChild(camera_matrix);
 
distortion = docNode.createElement('distortion');
distortion.setAttribute('type_id','opencv-matrix');
rows = docNode.createElement('rows');
rows.appendChild(docNode.createTextNode(sprintf('%d',5)));
distortion.appendChild(rows);
 
cols = docNode.createElement('cols');
cols.appendChild(docNode.createTextNode(sprintf('%d',1)));
distortion.appendChild(cols);
 
dt = docNode.createElement('dt');
dt.appendChild(docNode.createTextNode('d'));
distortion.appendChild(dt);
data = docNode.createElement('data');
for i=1:5
   data.appendChild(docNode.createTextNode(sprintf('%.16f ',Distortion(i))));
end
distortion.appendChild(data);
 
docRootNode.appendChild(distortion);
 
xmlFileName = file;
xmlwrite(xmlFileName,docNode);
end

三参数的转化保存结果

<"1.0" encoding="utf-8"?>
<opencv_storage>
  <camera-matrix type_id="opencv-matrix">
   <rows>3</rows>
   <cols>3</cols>
   <dt>d</dt>
   <data>1558.6100144620272658 0.0000000000000000 821.6453269280840459
0.0000000000000000 1557.8120286433929778 460.8682816753835141
0.0000000000000000 0.0000000000000000 1.0000000000000000
</data>
  </camera-matrix>
  <distortion type_id="opencv-matrix">
   <rows>5</rows>
   <cols>1</cols>
   <dt>d</dt>
   <data>-0.1840928673709393 -0.0328189923757994 0.0000000000000000 0.0000000000000000 0.2205440258401062 </data>
  </distortion>
</opencv_storage>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Python+OpenCV检测灯光亮点的实现方法
下一篇:python获取命令行参数实例方法讲解
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap