脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python调用REST API接口的几种方式汇总

(编辑:jimmy 日期: 2025/1/11 浏览:3 次 )

相信做过自动化运维的同学都用过REST API接口来完成某些动作。API是一套成熟系统所必需的接口,可以被其他系统或脚本来调用,这也是自动化运维的必修课。

本文主要介绍python中调用REST API的几种方式,下面是python中会用到的库。

  • - urllib2
  • - httplib2
  • - pycurl
  • - requests

urllib2

- Sample1

import urllib2, urllib
github_url = 'https://api.github.com/user/repos'
password_manager = urllib2.HTTPPasswordMgrWithDefaultRealm()
password_manager.add_password(None, github_url, 'user', '***')
auth = urllib2.HTTPBasicAuthHandler(password_manager) # create an authentication handler
opener = urllib2.build_opener(auth) # create an opener with the authentication handler
urllib2.install_opener(opener) # install the opener... 
request = urllib2.Request(github_url, urllib.urlencode({'name':'Test repo', 'description': 'Some test repository'})) # Manual encoding required
handler = urllib2.urlopen(request)
print handler.read()

- Sample2

import urllib2
url = 'http://ems.vip.ebay.com/removeSIforcloud.cgi"Cannot remove service instance!", error
  sys.exit(1)
response = resp.read()
print response

- Sample3

import urllib2, urllib, base64
url = "https://reparo.stratus.ebay.com/reparo/bootstrap/registerasset/" + rackid + "/" + asset
data = urllib.urlencode({
        'reservedResource':'RR-Hadoop',
        'resourceCapability':'Production',
        'movetoironic':'False',
        'output':'json'
    })
print "Bootstrap Asset jobs starting .............."

base64string = base64.encodestring('%s:%s' % (user, passwd)).replace('\n', '')
request = urllib2.Request(url, data, headers={"Authorization" : "Basic %s" % base64string})
response = urllib2.urlopen(request).read()
response_json = json.loads(response)
response_status = response_json['status']
status_code = response_status['statusCode']
status = response_status['status']
message = response_status['message']      
print status_code , status, message

2. httplib2

import urllib, httplib2
github_url = '
h = httplib2.Http(".cache")
h.add_credentials("user", "******", "
data = urllib.urlencode({"name":"test"})
resp, content = h.request(github_url, "POST", data)
print content

3. pycurl

import pycurl, json
github_url = "
user_pwd = "user:*****"
data = json.dumps({"name": "test_repo", "description": "Some test repo"})
c = pycurl.Curl()
c.setopt(pycurl.URL, github_url)
c.setopt(pycurl.USERPWD, user_pwd)
c.setopt(pycurl.POST, 1)
c.setopt(pycurl.POSTFIELDS, data)
c.perform()

4. requests

import requests, json
github_url = "
data = json.dumps({'name':'test', 'description':'some test repo'}) 
r = requests.post(github_url, data, auth=('user', '*****'))
print r.json

以上几种方式都可以调用API来执行动作,但requests这种方式代码最简洁,最清晰,建议采用。

以上就是Python调用REST API接口的几种方式汇总的详细内容,更多关于Python调用REST API接口的资料请关注其它相关文章!

上一篇:Python实现壁纸下载与轮换
下一篇:Python爬虫抓取论坛关键字过程解析
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap