脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python中Yield的基本用法

(编辑:jimmy 日期: 2025/1/11 浏览:3 次 )

带有yield的函数在Python中被称之为generator(生成器),也就是说,当你调用这个函数的时候,函数内部的代码并不立即执行 ,这个函数只是返回一个生成器(Generator Iterator)。

def generator():
 for i in range(10) :
  yield i*i

gen = generator()
print(gen)

<generator object generator at 0x7ffaad115aa0>

1. 使用next方法迭代生成器

generator函数怎么调用呢?答案是next函数。

print("first iteration:")
print(next(gen))

print("second iteration:")
print(next(gen))

print("third iteration:")
print(next(gen))

print("fourth iteration:")
print(next(gen))

程序输出:

first iteration:
 0
 second iteration:
 1
 three iteration:
 4
 four iteration:
 9

在函数第一次调用next(gen)函数时,generator函数从开始执行到yield,并返回yield之后的值。

在函数第二次调用next(gen)函数时,generator函数从上一次yield结束的地方继续运行,直至下一次执行到yield的地方,并返回yield之后的值。依次类推。

2. 使用send()方法与生成器函数通信

def generator():
 x = 1
 while True:
  y = (yield x)
  x += y

gen = generator()
  
print("first iteration:")
print(next(gen))

print("send iteration:")
print(gen.send(10))

代码输出:

first iteration:
 1
 send iteration:
 11

生成器(generator)函数用yield表达式将处理好的x发送给生成器(Generator)的调用者;然后生成器(generator)的调用者可以通过send函数,将外部信息替换生成器内部yield表达式的返回值,并赋值给y,并参与后续的迭代流程。

3. Yield的好处

Python之所以要提供这样的解决方案,主要是内存占用和性能的考量。看类似下面的代码:

for i in range(10000):
  ...

上述代码的问题在于,range(10000)生成的可迭代的对象都在内存中,如果数据量很大比较耗费内存。

而使用yield定义的生成器(Generator)可以很好的解决这一问题。

参考材料

  • https://pyzh.readthedocs.io/en/latest/the-python-yield-keyword-explained.html
  • https://liam.page/2017/06/30/understanding-yield-in-python/

总结

上一篇:Python环境使用OpenCV检测人脸实现教程
下一篇:python Tornado框架的使用示例
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap