脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python生成器generator原理及用法解析

(编辑:jimmy 日期: 2025/1/12 浏览:3 次 )

前言

生成器generator

生成器的本质是一个迭代器(iterator)

要理解生成器,就要在理解一下迭代,可迭代对象,迭代器,这三个概念

Python生成器generator简介

iteration, iterable, iterator

迭代(iteration):在python中迭代通常是通过for...in...来实现的.而且只要是可迭代对象iterable,都能进行迭代.

可迭代对象(iterable):Python中的任意的对象,只要它定义了可以返回一个迭代器的 __iter__方法,或者定义了可以支持下标索引的__getitem __方法,那么它就是一个可迭代对象。简单说,可迭代对象就是能提供迭代器的任意对象.返回的是一个iterator 对象.官方解释

迭代器(iterator ) : 简单的说,迭代器就是实现了iterator.__iter__() 和iterator.__next__() 的对象,iterator.__iter__()方法返回的是iterator对象本身.根据官方的说法,正是这个方法,实现了for ... in ...语句.而iterator.__next__()是iterator区别于iterable的关键了,它允许我们显式地获取一个元素.当调用next()方法时,实际上产生了2个操作:

更新iterator状态,令其指向后一项,以便下一次调用,每一个值过后,指针移动到下一位,对iterator遍历完后,其变成了一个空的容器,但不是None ,需要注意的是,迭代结束后,指针不会自动返回到首位,而是依旧停留在末位置,想要在开始,需要重新载入迭代对象.

实例理解:

 > from collections import Iterable, Iterator
 > a = [1,2,3]  # 众所周知,list是一个iterable
 > b = iter(a)  # 通过iter()方法,得到iterator,iter()实际上调用了__iter__(),
 > isinstance(a, Iterable)
 True
 > isinstance(a, Iterator)
 False
 > isinstance(b, Iterable)
 True
 > isinstance(b, Iterator)
 True

可见,itertor 一定是iterable ,但iterable不一定是itertor

 > dir(a)
 ['__add__','__class__','__contains__','__delattr__','__delitem__','__dir__','__doc__','__eq__','__format__','__ge__','__getattribute__','__getitem__','__gt__','__hash__','__iadd__','__imul__','__init__','__iter__','__le__','__len__','__lt__','__mul__','__ne__','__new__','__reduce__','__reduce_ex__','__repr__', '__reversed__','__rmul__', '__setattr__','__setitem__','__sizeof__','__str__', '__subclasshook__','append','clear' 'copy','count','extend','index','insert', 'pop','remove', 'reverse','sort']
 
 >dir(b)
 ['__class__','__delattr__', '__dir__', '__doc__','__eq__', '__format__','__ge__' ,'__getattribute__', '__gt__','__hash__','__init__','__iter__','__le__','__length_hint__',
 '__lt__','__ne__','__new__','__next__','__reduce__','__reduce_ex__','__repr__','__setattr__', '__setstate__','__sizeof__','__str__','__subclasshook__']

可以看到迭代器具有__next__ 这个方法,可迭代对象具有__getitem__

迭代器是消耗型的,随着指针的移动,遍历完毕以后,就为空,但是不是None

 > c = list(b)
 > c
 [1, 2, 3]
 > d = list(b)
 > d
 []
 
 
 # 空的iterator并不等于None.
 > if b:
 ...  print(1)
 ...
 1
 > if b == None:
 ...  print(1)
 ...

使用迭代器的内置方法 __next__ 和 next() 方法,遍历元素

 In [73]: e = iter(a)
 
 In [74]: next(e)
 Out[74]: 1
 
 In [75]: e.__next__
 Out[75]: <method-wrapper '__next__' of list_iterator object at 0x7f05571c8518>
 
 In [76]: e.__next__()
 Out[76]: 2
 
 In [77]: e.__next__()
 Out[77]: 3
 
 In [78]: e.__next__()
 ---------------------------------------------------------------------------
 StopIteration               Traceback (most recent call last)
 <ipython-input-78-6024b5bd9bd2> in <module>()
 ----> 1 e.__next__()
 StopIteration:

当遍历完毕时,会返回一个StopIteration 的错误.

for...in.... 遍历迭代

当我们对一个iterable 使用for ....in... 进行遍历时,实际上是想调用iter() 方法得到一个iterator ,假设为x ,然后循环的调用x 的__next__() (next())方法,取得每一次的值,直到iterator为空,返回StopIteration 作为循环的结束的标准.for....in...会自动处理 StopIteration 异常,从而避免了抛出异常,从而使程序中断.流程图为:

x = [1, 2, 3]
for i in x:
print(x)

Python生成器generator原理及用法解析

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:解决python运行效率不高的问题
下一篇:Win10环境中如何实现python2和python3并存
一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap