脚本专栏 
首页 > 脚本专栏 > 浏览文章

tensorflow 动态获取 BatchSzie 的大小实例

(编辑:jimmy 日期: 2025/1/12 浏览:3 次 )

我就废话不多说了,大家还是直接看代码吧~

import tensorflow as tf
import sys

with tf.variable_scope('ha'):
  a1 = tf.get_variable('a', shape=[], dtype=tf.int32)
  with tf.variable_scope('haha'):
    a2 = tf.get_variable('a', shape=[], dtype=tf.int32)
    with tf.variable_scope('hahaha'):
      a3 = tf.get_variable('a', shape=[], dtype=tf.int32)

with tf.variable_scope('ha', reuse=True):
  # 不会创建新的变量
  a4 = tf.get_variable('a', shape=[], dtype=tf.int32)
  
sum = a1 + a2 + a3 + a4

fts_s = tf.placeholder(tf.float32, shape=(None, 100), name='fts_s')
b = tf.zeros(shape=(tf.shape(fts_s)[0], tf.shape(fts_s)[1]))

concat = tf.concat(axis=1, values=[fts_s, b])

init_op = tf.global_variables_initializer()
with tf.Session() as sess:
  sess.run(init_op)
  for var in tf.global_variables():
    print var.name
  import numpy as np
  ft_sample = np.ones((10, 100))
  con_value = sess.run([concat], feed_dict={fts_s: ft_sample})
  print con_value[0].shape

results:

ha/a:0
ha/haha/a:0
ha/haha/hahaha/a:0
(10, 200)

小总结:

1: 对于未知的shape, 最常用的就是batch-size 通常是 None 代替, 那么在代码中需要用到实际数据的batch size的时候应该怎么做呢"color: #ff0000">补充知识:tensorflow RNN 使用动态的batch_size

在使用tensorflow实现RNN模型时,需要初始化隐藏状态 tensorflow 动态获取 BatchSzie 的大小实例 如下:

lstm_cell_1 = [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE),output_keep_prob=dropout_keep_prob) for _ in range(NUM_LAYERS)]
cell_1 = tf.nn.rnn_cell.MultiRNNCell(lstm_cell_1)
self.init_state_1 = cell_1.zero_state(self.batch_size,tf.float32)

如果我们直接使用超参数batch_size初始化 tensorflow 动态获取 BatchSzie 的大小实例 在使用模型预测的结果时会很麻烦。我们可以使用动态的batch_size,就是将batch_size作为一个placeholder,在运行时,将batch_size作为输入输入就可以实现根据数据量的大小使用不同的batch_size。

代码实现如下:

self.batch_size = tf.placeholder(tf.int32,[],name='batch_size')

self.state = cell.zero_state(self.batch_size,tf.float32)

以上这篇tensorflow 动态获取 BatchSzie 的大小实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python与pycharm有何区别
下一篇:浅谈TensorFlow之稀疏张量表示
一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap