脚本专栏 
首页 > 脚本专栏 > 浏览文章

解决Keras中Embedding层masking与Concatenate层不可调和的问题

(编辑:jimmy 日期: 2025/1/12 浏览:3 次 )

问题描述

我在用Keras的Embedding层做nlp相关的实现时,发现了一个神奇的问题,先上代码:

a = Input(shape=[15]) # None*15
b = Input(shape=[30]) # None*30
emb_a = Embedding(10, 5, mask_zero=True)(a) # None*15*5
emb_b = Embedding(20, 5, mask_zero=False)(b) # None*30*5
cat = Concatenate(axis=1)([emb_a, emb_b]) # None*45*5
model = Model(inputs=[a, b], outputs=[cat])

print model.summary()

我有两个Embedding层,当其中一个设置mask_zero=True,而另一个为False时,会报如下错误。

ValueError: Dimension 0 in both shapes must be equal, but are 1 and 5.
Shapes are [1] and [5]. for 'concatenate_1/concat_1' (op: 'ConcatV2')
with input shapes: ["htmlcode">

a = Input(shape=[30]) 
...
cat = Concatenate(axis=2)([emb_a, emb_b])

运行成功了,并且summary显示两个Embedding层输出矩阵的第三维都是5。

这就很奇怪了,明明没有改变维度,为什么会报那样的错误?

然后我仔细追溯了一下前面的各项error,发现这么一句:

File ".../keras/layers/merge.py", line 374, in compute_mask
concatenated = K.concatenate(masks, axis=self.axis)

难道是mask的拼接有问题?

于是我修改了/keras/layers/merge.py里的Concatenate类的compute_mask函数(sudo vim就可以修改),在返回前输出一下masks:

def compute_mask(self, inputs, mask=None):
 ...
 for x in masks:
  print x
 return ...

Tensor("concatenate_1/ExpandDims:0", shape=("concatenate_1/Cast:0", shape=("htmlcode">

...
elif K.ndim(mask_i) < K.ndim(input_i):
 # Mask is smaller than the input, expand it
 masks.append(K.expand_dims(mask_i))
...

意思是当mask_i的维度比input_i的维度小时,扩展一维,这下知道第三维的1是怎么来的了,那么可以预计compute_mask函数输入的mask尺寸应该是(None, 30),输出一下试试:

def compute_mask(self, inputs, mask=None):
 print mask
 ...

[<tf.Tensor 'embedding_1/NotEqual:0' shape=("htmlcode">

def compute_mask(self, inputs, mask=None):
 if not self.mask_zero:
  return None
 else:
  return K.not_equal(inputs, 0)

可见,Embedding层的mask是记录了Embedding输入中非零元素的位置,并且传给后面的支持masking的层,在后面的层里起作用。

一种最简单的解决方案:

给所有参与Concatenate的Embedding层都设置mask_zero=True。

但是,我想到了一种更灵活的解决方案:

修改embedding.py的compute_mask函数,使得输出的mask从2维变成3维,且第三维等于output_dim。

 import tensorflow as tf
 ...
 def compute_mask(self, inputs, mask=None):
  if not self.mask_zero:
   return None
  else:
   mask = K.repeat(K.not_equal(inputs, 0), self.output_dim) # ["color: #ff00ff">实验一:mask的正确性

我把输出的mask做了改动,不知道mask是否是正确的。

如下所示,数据是一个带有3个样本、样本长度最长为3的补零padding过的矩阵,我分别让Embedding层的mask_zero为False和True(为True时input_dim=|va|+2所以是5)。然后分别将Embedding的输出在axis=1用MySumLayer进行求和。为了方便观察,我用keras.initializers.ones()把Embedding层的权值全部初始化为1。

# data
data = np.array([[1,0,0],
     [1,2,0],
     [1,2,3]])
init = keras.initializers.ones()

# network
a = Input(shape=[3]) # None*3
emb1 = Embedding(4, 5, embeddings_initializer=init, mask_zero=False)(a) # None*3*5
emb2 = Embedding(5, 5, embeddings_initializer=init, mask_zero=True)(a) # None*3*5
sum1 = MySumLayer(axis=1)(emb1) # None*5
sum2 = MySumLayer(axis=1)(emb2) # None*5
model = Model(inputs=[a], outputs=[sum1, sum2])

# prediciton
out = model.predict(data)
for x in out:
 print x

结果如下:

[[3. 3. 3. 3. 3.]
 [3. 3. 3. 3. 3.]
 [3. 3. 3. 3. 3.]]

[[1. 1. 1. 1. 1.]
 [2. 2. 2. 2. 2.]
 [3. 3. 3. 3. 3.]]

这个结果是正确的,这里解释一波:

(1)当mask_True=False时,输入矩阵中的0也会被认为是正确的index,从而从权值矩阵中抽出第0行作为该index的Embedding,而我的权值都是1,因此所有Embedding都是1,对axis=1求和,实际上是对word length这一轴求和,输入的word length最长为3,以致于输出矩阵的元素都是3.

(2)当mask_True=True时,输入矩阵中的0会被mask掉,而这个mask的操作是体现在MySumLayer中的,将输入(3, 3, 5)与mask(3, 3, 5)逐元素相乘,再相加。第一个样本只有一项非零,第二个有两项,第三个三项,因此MySumLayer输出的矩阵,各行元素分别是1,2,3.

另外附上MySumLayer的代码,它的功能是指定一个axis将Tensor进行求和:

from keras import backend as K
from keras.engine.topology import Layer
import tensorflow as tf

class MySumLayer(Layer):
 def __init__(self, axis, **kwargs):
  self.supports_masking = True
  self.axis = axis
  super(MySumLayer, self).__init__(**kwargs)

 def compute_mask(self, input, input_mask=None):
  # do not pass the mask to the next layers
  return None

 def call(self, x, mask=None):

  if mask is not None:
   # mask (batch, time)
   mask = K.cast(mask, K.floatx())
   if K.ndim(x)!=K.ndim(mask):
    mask = K.repeat(mask, x.shape[-1])
    mask = tf.transpose(mask, [0,2,1])
   x = x * mask
   return K.sum(x, axis=self.axis)
  else:
   return K.sum(x, axis=self.axis)

 def compute_output_shape(self, input_shape):
  # remove temporal dimension
  if self.axis==1:
   return input_shape[0], input_shape[2]
  if self.axis==2:
   return input_shape[0], input_shape[1]

实验二:一个mask_zero=True和一个mask_zero=False的Embedding是否能够拼接

a = Input(shape=[3]) # None*3
b = Input(shape=[4]) # None*4
emba = Embedding(4, 5, embeddings_initializer=init, mask_zero=False)(a) # None*3*5
embb = Embedding(6, 5, embeddings_initializer=init, mask_zero=True)(b) # None*4*5
cat = Concatenate(axis=1)([emba, embb]) # None*7*5

model = Model(inputs=[a,b], outputs=[cat])
print model.summary()

没有报错!而且输出的shape正是(None, 7, 5)。

实验三:两个mask_zero=True的Embedding拼接是否会报错

a = Input(shape=[3]) # None*3
b = Input(shape=[4]) # None*4
emba = Embedding(4, 5, embeddings_initializer=init, mask_zero=True)(a) # None*3*5
embb = Embedding(6, 5, embeddings_initializer=init, mask_zero=True)(b) # None*4*5
cat = Concatenate(axis=1)([emba, embb]) # None*7*5

model = Model(inputs=[a,b], outputs=[cat])
print model.summary()

没有报错!

实验四:两个mask_zero=True的Embedding拼接结果是否正确

如下所示,第一个矩阵是一个带有4个样本、样本长度最长为3的补零padding过的矩阵,第二个矩阵是一个带有4个样本、样本长度最长为4的补零padding过的矩阵。为什么这里要求样本个数一致呢,因为一般来说需要这种拼接操作的都是同一批样本的不同特征。两者的Embedding都设置mask_zero=True,在axis=1拼接后,用MySumLayer在axis=1加起来。

# data
data1 = np.array([[1,0,0],
     [1,2,0],
     [1,2,3],
     [1,2,3]])
data2 = np.array([[1,0,0,0],
     [1,2,0,0],
     [1,2,3,0],
     [1,2,3,4]])
init = keras.initializers.ones()

# network
a = Input(shape=[3]) # None*3
b = Input(shape=[4]) # None*4
emba = Embedding(4, 5, embeddings_initializer=init, mask_zero=True)(a) # None*3*5
embb = Embedding(6, 5, embeddings_initializer=init, mask_zero=True)(b) # None*3*5

cat = Concatenate(axis=1)([emba, embb])
su = MySumLayer(axis=1)(cat)

model = Model(inputs=[a,b], outputs=[su])

# prediction
print model.predict([data1, data2])

输出如下

[[2. 2. 2. 2. 2.]
 [4. 4. 4. 4. 4.]
 [6. 6. 6. 6. 6.]
 [7. 7. 7. 7. 7.]]

这个结果是正确的,解释一波,其实两个矩阵横向拼接起来是下面这样的,4个样本分别有2、4、6、7个非零index,而Embedding层权值都是1,所以最终输出的就是上面这个样子。

# index
1 0 0 1 0 0 0
1 2 0 1 2 0 0
1 2 3 1 2 3 0
1 2 3 1 2 3 4

至此,问题成功解决了。

以上这篇解决Keras中Embedding层masking与Concatenate层不可调和的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:keras model.fit 解决validation_spilt=num 的问题
下一篇:为什么是 Python -m
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap