脚本专栏 
首页 > 脚本专栏 > 浏览文章

Tensorflow中的降维函数tf.reduce_*使用总结

(编辑:jimmy 日期: 2025/1/14 浏览:3 次 )

在使用tensorflow时常常会使用到tf.reduce_*这类的函数,在此对一些常见的函数进行汇总

1.tf.reduce_sum

tf.reduce_sum(input_tensor , axis = None , keep_dims = False , name = None , reduction_indices = None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则缩小所有尺寸。必须在范围[-rank(input_tensor), rank(input_tensor))内。
  • keep_dims:如果为true,则保留长度为1的缩小尺寸。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

该函数返回减少的张量,相当于np.sum

功能:

此函数计算一个张量的各个维度上元素的总和。

说明:

函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。

举例:

x = tf.constant([[1, 1, 1], [1, 1, 1]])
tf.reduce_sum(x) # 6
tf.reduce_sum(x, 0) # [2, 2, 2]
tf.reduce_sum(x, 1) # [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) # [[3], [3]]
tf.reduce_sum(x, [0, 1]) # 6

2.reduce_min

reduce_min(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则缩小所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的缩小维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

该函数返回减少的张量,相当于np.min

功能:

tf.reduce_min函数用来计算一个张量的各个维度上元素的最小值。 

说明:

同样按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。

3.reduce_max

reduce_max(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为 None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的减少维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

该函数返回减少的张量,相当于np.max。

功能:

计算一个张量的各个维度上元素的最大值。 

说明:

按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则减小的维度将保留为长度1。如果axis没有条目,则减少所有维度,并返回具有单个元素的张量。

4.reduce_mean

reduce_mean

5.reduce_all

reduce_all(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的缩小尺寸。
  • name:操作的名称(可选)。
  • reduction_indices:axis的不支持使用的名称。

返回:

该函数返回减少的张量,相当于np.mean

功能:

计算张量的各个维度上的元素的平均值。

说明:

axis是tf.reduce_mean函数中的参数,按照函数中axis给定的维度减少input_tensor。除非keep_dims是true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则缩小的维度将保留为1。 如果axis没有条目,则减少所有维度,并返回具有单个元素的张量。

举例:

x = tf.constant([[1., 1.], [2., 2.]])
tf.reduce_mean(x) # 1.5
tf.reduce_mean(x, 0) # [1.5, 1.5]
tf.reduce_mean(x, 1) # [1., 2.]

6.reduce_any

reduce_any(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的布尔张量。
  • axis:要减小的尺寸。如果为None(默认),则减少所有维度。必须在范围[-rank(input_tensor), rank(input_tensor))内。
  • keep_dims:如果为true,则保留长度为1的缩小维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的已经弃用的名称。

返回:

减少张量,相当于np.any

功能:

在张量的维度上计算元素的 "逻辑或"。 

说明:

按照axis给定的维度减少input_tensor。除非 keep_dims 是 true,否则张量的秩将在axis的每个条目中减少1。如果keep_dims为true,则缩小的维度将保留为1。如果axis没有条目,则会减少所有维度,并返回具有单个元素的张量。

举例:

x = tf.constant([[True, True], [False, False]])
tf.reduce_any(x) # True
tf.reduce_any(x, 0) # [True, True]
tf.reduce_any(x, 1) # [True, False]

7.reduce_logsumexp

reduce_logsumexp(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:张量减少。应该有数字类型。
  • axis:要减小的维度。如果为None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的减少尺寸。
  • name:操作的名称(可选)。
  • reduction_indices:axis的弃用名称。

返回:

减少的张量。

功能:

计算log(sum(exp(张量的各维数的元素)))。 

说明:

按照给定的axis上的维度减少input_tensor。除非keep_dims是true,否则张量的秩在axis上的每一项都减少1。如果keep_dims为 true,则减少的尺寸将保留为1。如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。这个函数在数值上比 log(sum(exp(input)))更稳定。它避免了大量输入的 exp 引起的溢出和小输入日志带来的下溢。

举例:

x = tf.constant([[0., 0., 0.], [0., 0., 0.]])
tf.reduce_logsumexp(x) # log(6)
tf.reduce_logsumexp(x, 0) # [log(2), log(2), log(2)]
tf.reduce_logsumexp(x, 1) # [log(3), log(3)]
tf.reduce_logsumexp(x, 1, keep_dims=True) # [[log(3)], [log(3)]]
tf.reduce_logsumexp(x, [0, 1]) # log(6)

8.reduce_prod

reduce_prod(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

参数:

  • input_tensor:要减少的张量。应该有数字类型。
  • axis:要减小的尺寸。如果为None(默认),则将缩小所有尺寸。必须在[-rank(input_tensor), rank(input_tensor))范围内。
  • keep_dims:如果为true,则保留长度为1的缩小维度。
  • name:操作的名称(可选)。
  • reduction_indices:axis的废弃的名称。

返回:

结果返回减少的张量,相当于np.prod

功能:

此函数计算一个张量的各个维度上元素的乘积。 

说明:

函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。

上一篇:Jupyter Notebook的连接密码 token查询方式
下一篇:Python 操作 PostgreSQL 数据库示例【连接、增删改查等】
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap