脚本专栏 
首页 > 脚本专栏 > 浏览文章

tensorflow中tf.reduce_mean函数的使用

(编辑:jimmy 日期: 2025/1/14 浏览:3 次 )

tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor(图像)的平均值。

reduce_mean(input_tensor,
        axis=None,
        keep_dims=False,
        name=None,
        reduction_indices=None)
  • 第一个参数input_tensor: 输入的待降维的tensor;
  • 第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值;
  • 第三个参数keep_dims:是否降维度,设置为True,输出的结果保持输入tensor的形状,设置为False,输出结果会降低维度;
  • 第四个参数name: 操作的名称;
  • 第五个参数 reduction_indices:在以前版本中用来指定轴,已弃用; 

以一个维度是2,形状是[2,3]的tensor举例:

import tensorflow as tf
 
x = [[1,2,3],
   [1,2,3]]
 
xx = tf.cast(x,tf.float32)
 
mean_all = tf.reduce_mean(xx, keep_dims=False)
mean_0 = tf.reduce_mean(xx, axis=0, keep_dims=False)
mean_1 = tf.reduce_mean(xx, axis=1, keep_dims=False)
 
 
with tf.Session() as sess:
  m_a,m_0,m_1 = sess.run([mean_all, mean_0, mean_1])
 
print m_a  # output: 2.0
print m_0  # output: [ 1. 2. 3.]
print m_1  #output: [ 2. 2.]

如果设置保持原来的张量的维度,keep_dims=True ,结果:

print m_a  # output: [[ 2.]]
print m_0  # output: [[ 1. 2. 3.]]
print m_1  #output: [[ 2.], [ 2.]]

类似函数还有:

  • tf.reduce_sum :计算tensor指定轴方向上的所有元素的累加和;
  • tf.reduce_max  :  计算tensor指定轴方向上的各个元素的最大值;
  • tf.reduce_all :  计算tensor指定轴方向上的各个元素的逻辑和(and运算);
  • tf.reduce_any:  计算tensor指定轴方向上的各个元素的逻辑或(or运算);
上一篇:Python绘制全球疫情变化地图的实例代码
下一篇:TensorFlow打印输出tensor的值
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap