脚本专栏 
首页 > 脚本专栏 > 浏览文章

TensorFlow的reshape操作 tf.reshape的实现

(编辑:jimmy 日期: 2025/1/14 浏览:3 次 )

初学tensorflow,如果写的不对的,请更正,谢谢!

tf.reshape(tensor, shape, name=None)

函数的作用是将tensor变换为参数shape的形式。

其中shape为一个列表形式,特殊的一点是列表中可以存在-1。-1代表的含义是不用我们自己指定这一维的大小,函数会自动计算,但列表中只能存在一个-1。(当然如果存在多个-1,就是一个存在多解的方程了)

好了我想说的重点还有一个就是根据shape如何变换矩阵。其实简单的想就是,

reshape(t, shape) => reshape(t, [-1]) => reshape(t, shape)

首先将矩阵t变为一维矩阵,然后再对矩阵的形式更改就可以了。

官方的例子:

# tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
# tensor 't' has shape [9]
reshape(t, [3, 3]) ==> [[1, 2, 3],
            [4, 5, 6],
            [7, 8, 9]]

# tensor 't' is [[[1, 1], [2, 2]],
#        [[3, 3], [4, 4]]]
# tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2],
            [3, 3, 4, 4]]

# tensor 't' is [[[1, 1, 1],
#         [2, 2, 2]],
#        [[3, 3, 3],
#         [4, 4, 4]],
#        [[5, 5, 5],
#         [6, 6, 6]]]
# tensor 't' has shape [3, 2, 3]
# pass '[-1]' to flatten 't'
reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]

# -1 can also be used to infer the shape

# -1 is inferred to be 9:
reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
             [4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 2:
reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
             [4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 3:
reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1],
               [2, 2, 2],
               [3, 3, 3]],
               [[4, 4, 4],
               [5, 5, 5],
               [6, 6, 6]]]

# tensor 't' is [7]
# shape `[]` reshapes to a scalar
reshape(t, []) ==> 7

在举几个例子或许就清楚了,有一个数组z,它的shape属性是(4, 4)

z = np.array([[1, 2, 3, 4],
     [5, 6, 7, 8],
     [9, 10, 11, 12],
     [13, 14, 15, 16]])
z.shape
(4, 4)

z.reshape(-1)

z.reshape(-1)
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])

z.reshape(-1, 1)
也就是说,先前我们不知道z的shape属性是多少,但是想让z变成只有一列,行数不知道多少,通过`z.reshape(-1,1)`,Numpy自动计算出有12行,新的数组shape属性为(16, 1),与原来的(4, 4)配套。

z.reshape(-1,1)
 array([[ 1],
    [ 2],
    [ 3],
    [ 4],
    [ 5],
    [ 6],
    [ 7],
    [ 8],
    [ 9],
    [10],
    [11],
    [12],
    [13],
    [14],
    [15],
    [16]])

z.reshape(-1, 2)

newshape等于-1,列数等于2,行数未知,reshape后的shape等于(8, 2)

 z.reshape(-1, 2)
 array([[ 1, 2],
    [ 3, 4],
    [ 5, 6],
    [ 7, 8],
    [ 9, 10],
    [11, 12],
    [13, 14],
    [15, 16]])
上一篇:tensorflow常用函数API介绍
下一篇:pip安装tensorflow的坑的解决
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap