脚本专栏 
首页 > 脚本专栏 > 浏览文章

解决import tensorflow as tf 出错的原因

(编辑:jimmy 日期: 2025/1/14 浏览:3 次 )

笔者在运行 import tensorflow as tf时出现下面的错误,但在运行import tensorflow时没有出错。

> import tensorflow as tf
RuntimeError: module compiled against API version 0xc but this version of numpy is 0xa
ImportError: numpy.core.multiarray failed to import
ImportError: numpy.core.umath failed to import
ImportError: numpy.core.umath failed to import
2018-12-09 01:22:17.925262: F tensorflow/python/lib/core/bfloat16.cc:675] Check failed: PyBfloat16_Type.tp_base != nullp
tr

后运行keras初级教程上的以下代码也报错:

# univariate lstm example
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
# define dataset
X = array([[10, 20, 30], [20, 30, 40], [30, 40, 50], [40, 50, 60]])
y = array([40, 50, 60, 70])
# reshape from [samples, timesteps] into [samples, timesteps, features]
X = X.reshape((X.shape[0], X.shape[1], 1))
# define model
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(3, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit(X, y, epochs=1000, verbose=0)
# demonstrate prediction
x_input = array([50, 60, 70])
x_input = x_input.reshape((1, 3, 1))
yhat = model.predict(x_input, verbose=0)
print(yhat)


经查阅资料后,安装以下网站的pip install tf-nightly

https://pypi.org/project/tf-nightly/

安装完成后运行上面所有代码就OK了,特此分享!

上一篇:解决Jupyter NoteBook输出的图表太小看不清问题
下一篇:tensorflow安装成功import tensorflow 出现问题
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap