脚本专栏 
首页 > 脚本专栏 > 浏览文章

在python中求分布函数相关的包实例

(编辑:jimmy 日期: 2025/1/14 浏览:3 次 )

为了了解(正态)分布的方法和属性,我们首先引入norm

 >from scipy.stats import norm
 >rv = norm()
 >dir(rv) # reformatted
[‘__class__', ‘__delattr__', ‘__dict__', ‘__doc__', ‘__getattribute__',
‘__hash__', ‘__init__', ‘__module__', ‘__new__', ‘__reduce__', ‘__reduce_ex__',
‘__repr__', ‘__setattr__', ‘__str__', ‘__weakref__', ‘args', ‘cdf', ‘dist',
‘entropy', ‘isf', ‘kwds', ‘moment', ‘pdf', ‘pmf', ‘ppf', ‘rvs', ‘sf', ‘stats']

其中,连续随机变量的主要公共方法如下:

"htmlcode">

 >norm.cdf(0)
0.5
>norm.mean(), norm.std(), norm.var()
(0.0, 1.0, 1.0)

重点来了,cdf的逆竟然也可以求,这个方法就是ppf

>norm.ppf(0.5)
0.0

离散分布中,pdf被更换为密度函数pmf,而cdf的逆也有所不同:

ppf(q) = min{x : cdf(x) >= q, x integer}

此外,fit可以求分布参数的极大似然估计,包括location与scale,nnlf可以求负对数似然函数,expect可以计算函数pdf或pmf的期望值。

以上这篇在python中求分布函数相关的包实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:使用Pycharm分段执行代码
下一篇:pyinstaller打包成无控制台程序时运行出错(与popen冲突的解决方法)
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap