脚本专栏 
首页 > 脚本专栏 > 浏览文章

python爬虫库scrapy简单使用实例详解

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

最近因为项目需求,需要写个爬虫爬取一些题库。在这之前爬虫我都是用node或者php写的。一直听说python写爬虫有一手,便入手了python的爬虫框架scrapy.

下面简单的介绍一下scrapy的目录结构与使用:

首先我们得安装scrapy框架

pip install scrapy

接着使用scrapy命令创建一个爬虫项目:

scrapy startproject questions

相关文件简介:

scrapy.cfg: 项目的配置文件

questions/: 该项目的python模块。之后您将在此加入代码。

questions/items.py: 项目中的item文件.

questions/pipelines.py: 项目中的pipelines文件.

questions/settings.py: 项目的设置文件.

questions/spiders/: 放置spider代码的目录.

questions/spiders/xueersi.py: 实现爬虫的主体代码.

xueersi.py"htmlcode">

# -*- coding: utf-8 -*-
import scrapy
import time
import numpy
import re
from questions.items import QuestionsItem
class xueersiSpider(scrapy.Spider):
  name = "xueersi" # 爬虫名字
  allowed_domains = ["tiku.xueersi.com"] # 目标的域名
  # 爬取的目标地址
  start_urls = [
    "http://tiku.xueersi.com/shiti/list_1_1_0_0_4_0_1",
    "http://tiku.xueersi.com/shiti/list_1_2_0_0_4_0_1",
    "http://tiku.xueersi.com/shiti/list_1_3_0_0_4_0_1",
  ]
  levels = ['偏易','中档','偏难']
  subjects = ['英语','语文','数学']
   # 爬虫开始的时候,自动调用该方法,如果该方法不存在会自动调用parse方法
  # def start_requests(self):
  #   yield scrapy.Request('http://tiku.xueersi.com/shiti/list_1_2_0_0_4_0_39',callback=self.getquestion)
  # start_requests方法不存在时,parse方法自动被调用
  def parse(self, response):
     # xpath的选择器语法不多介绍,可以直接查看官方文档
    arr = response.xpath("//ul[@class='pagination']/li/a/text()").extract()
    total_page = arr[3]
     # 获取分页
    for index in range(int(total_page)):
      yield scrapy.Request(response.url.replace('_0_0_4_0_1',"_0_0_4_0_"+str(index)),callback=self.getquestion) # 发出新的请求,获取每个分页所有题目
  # 获取题目
  def getquestion(self,response):
    for res in response.xpath('//div[@class="main-wrap"]/ul[@class="items"]/li'):
      item = QuestionsItem() # 实例化Item类
      # 获取问题
      questions = res.xpath('./div[@class="content-area"]').re(r'<div class="content-area">"info"]').re(ur'难度:([\s\S]+"info"]/a/@href').extract()[0]
          request = scrapy.Request(url,callback=self.getanswer)
          request.meta['item'] = item # 缓存item数据,传递给下一个请求
          yield request
      #for option in options:
  # 获取答案      
  def getanswer(self,response):
    
    res = response.xpath('//div[@class="part"]').re(ur'<td>([\s\S]+"htmlcode">
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class QuestionsItem(scrapy.Item):
  content = scrapy.Field()
  subject = scrapy.Field()
  level = scrapy.Field()
  answer = scrapy.Field()
  options = scrapy.Field()
  analysis = scrapy.Field()
  source = scrapy.Field()
  answer_url = scrapy.Field()
  pass

pipelines.py 输出管道(本例子输出的数据写入本地数据库):

# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymysql
import md5
class QuestionsPipeline(object):
  def __init__(self): 
    # 建立数据库连接 
    self.connect = pymysql.connect('localhost','root','','question',use_unicode=True,charset='utf8') 
    # 获取游标 
    self.cursor = self.connect.cursor() 
    print("connecting mysql success!") 
    self.answer = ['A','B','C','D']
  def process_item(self, item, spider):
    content = pymysql.escape_string(item['content'])
     # 获取题目hash值,使用该字段过滤重复的题目
    m1 = md5.new()  
    m1.update(content)
    hash = m1.hexdigest()
    selectstr = "select id from question where hash='%s'"%(hash)
    self.cursor.execute(selectstr)
    res = self.cursor.fetchone()
    # 过滤相同的题目
    if not res:
       # 插入题目
      sqlstr = "insert into question(content,source,subject,level,answer,analysis,hash,answer_url) VALUES('%s','%s','%s','%s','%s','%s','%s','%s')"%(content,pymysql.escape_string(item['source']),item['subject'],item['level'],item['answer'],pymysql.escape_string(item['analysis']),hash,item['answer_url'])
      self.cursor.execute(sqlstr)
      qid = self.cursor.lastrowid
       # 插入选项
      for index in range(len(item['options'])):
        option = item['options'][index]
        answer = self.answer.index(item['answer'])
        if answer==index:
          ans = '2'
        else:
          ans = '1'
        sqlstr = "insert into options(content,qid,answer) VALUES('%s','%s','%s')"%(pymysql.escape_string(option[0]),qid,ans)
        self.cursor.execute(sqlstr)
      self.connect.commit() 
      #self.connect.close() 
    return item
 

爬虫构建完毕后,在项目的根目录下运行

scrapy crawl xueersi # scrapy crawl 爬虫的名称

更多关于python爬虫库scrapy使用方法请查看下面的相关链接

上一篇:Python获取、格式化当前时间日期的方法
下一篇:Python3操作MongoDB增册改查等方法详解
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap