脚本专栏 
首页 > 脚本专栏 > 浏览文章

pandas中的数据去重处理的实现方法

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

数据去重可以使用duplicated()和drop_duplicates()两个方法。

DataFrame.duplicated(subset = None,keep =‘first' )返回boolean Series表示重复行

参数: 
subset:列标签或标签序列,可选
仅考虑用于标识重复项的某些列,默认情况下使用所有列
keep:{‘first',‘last',False},默认'first'

  • first:标记重复,True除了第一次出现。
  • last:标记重复,True除了最后一次出现。
  • 错误:将所有重复项标记为True。
import numpy as np
import pandas as pd
from pandas import Series, DataFrame

df = pd.read_csv('./demo_duplicate.csv')
print(df)
print(df['Seqno'].unique()) # [0. 1.]

# 使用duplicated 查看 重复值
# 参数 keep 可以标记重复值 {'first','last',False}
print(df['Seqno'].duplicated())
'''
0  False
1   True
2   True
3   True
4  False
Name: Seqno, dtype: bool
'''

# 删除 series 重复数据
print(df['Seqno'].drop_duplicates())
'''
0  0.0
4  1.0
Name: Seqno, dtype: float64
'''

# 删除 dataframe 重复数据
print(df.drop_duplicates(['Seqno'])) # 按照 Seqno 来 去重
'''
  Price Seqno Symbol    time
0 1623.0  0.0  APPL 1473411962
4 1649.0  1.0  APPL 1473411963
'''
# drop_dujplicates() 第二个参数 keep 包含的值 有: first、last、False
print(df.drop_duplicates(['Seqno'], keep='last')) # 保存最后一个
'''
  Price Seqno Symbol    time
3 1623.0  0.0  APPL 1473411963
4 1649.0  1.0  APPL 1473411963
'''

pandas 去除重复行

DataFrame.drop_duplicates(subset = None,keep ='first',inplace = False )

subset : 指定列,默认情况下使用所有列

keep : {'first','last',False},默认'first'

first :删除重复项保留第一次出现的。last :删除重复项保留最后一次出现的。false:删除所有重复项。

inplace : 布尔值,默认为False          是否删除重复项或返回副本

栗子:

pandas中的数据去重处理的实现方法

上一篇:TensorFlow Saver:保存和读取模型参数.ckpt实例
下一篇:tensorflow实现读取模型中保存的值 tf.train.NewCheckpointReader
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap