脚本专栏 
首页 > 脚本专栏 > 浏览文章

python 爬取疫情数据的源码

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

疫情数据

python 爬取疫情数据的源码

程序源码

// An highlighted block
import requests
import json
class epidemic_data():
  def __init__(self, province):
    self.url = url
    self.header = header
    self.text = {}
    self.province = province
    # self.r=None
  def down_page(self):
    r = requests.get(url=url, headers=header)
    self.text = r.text
    # self.r = r
  def parse_page(self):
    # print(type(self.r.json()['data']))
    # 因为解析数据为 data 前有一个"",所以数据类型为string
    data_str = json.loads(self.text)['data'] #sring
    # print(type(data_dict))
    # print(type(data_dict['data']))
    # 将str 转化为对象
    data_json = json.loads(data_str)
    data_tree_dict = data_json['areaTree'][0]['children'] # 取中国的省列表
    prt_str = []
    prt_str.append("数据更新时间:"+data_json['lastUpdateTime'])
    prt_str.append("全国" + ":" + "累计确诊病例:" + str(data_json['chinaTotal']['confirm']) +             "累计疑似病例:" + str(data_json['chinaTotal']['suspect']) +             "累计死亡病例:" + str(data_json['chinaTotal']['dead']) +             "累计出院病例:" + str(data_json['chinaTotal']['heal']) +             "今日新增确诊病例:" + str(data_json['chinaAdd']['confirm']) +             "今日新增疑似病例:" + str(data_json['chinaAdd']['suspect']) +             "今日新增死亡病例:" + str(data_json['chinaAdd']['dead']) +             "今日新增出院病例:" + str(data_json['chinaAdd']['heal']))
    for province_list in data_tree_dict:
      for provice_name in self.province:
        if provice_name in province_list['name']:
          city_list = province_list['children']
          prt_str.append(province_list['name'] + ":" + "累计确诊病例:" + str(province_list['total']['confirm']) +                     "累计死亡病例:" + str(province_list['total']['dead']) +                     "累计出院病例:" + str(province_list['total']['heal']) +                     "今日新增确诊病例:" + str(province_list['today']['confirm']) +                     "今日新增死亡病例:" + str(province_list['today']['dead']) +                     "今日新增出院病例:" + str(province_list['today']['heal']))
          if provice_name == '山东':
            for data_dict in city_list:
              prt_str.append(data_dict['name'] + ":" + "累计确诊病例:" + str(data_dict['total']['confirm']) +                       "累计死亡病例:" + str(data_dict['total']['dead']) +                       "累计出院病例:" + str(data_dict['total']['heal']) +                       "今日确诊病例:" + str(data_dict['today']['confirm']) +                       "今日死亡病例:" + str(data_dict['today']['dead']) +                       "今日出院病例:" + str(data_dict['today']['heal']))
    for item in prt_str:
      print(item)
    a = data_tree_dict
    # print(type(data_tree_dict['chinaTotal']))
    # print(data_tree_dict.keys())
  def write_page(self):
    pass
  def show(self):
    pass
  def show(self):
    self.down_page()
    self.parse_page()
if __name__ == '__main__':
  url = 'https://view.inews.qq.com/g2/getOnsInfo"color: #ff0000">总结

以上所述是小编给大家介绍的python 爬取疫情数据的源码,希望对大家有所帮助!

上一篇:Python列表操作方法详解
下一篇:Python2与Python3的区别详解
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap