脚本专栏 
首页 > 脚本专栏 > 浏览文章

利用keras加载训练好的.H5文件,并实现预测图片

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

我就废话不多说了,直接上代码吧!

import matplotlib
matplotlib.use('Agg')
import os
from keras.models import load_model
import numpy as np
from PIL import Image
import cv2
#加载模型h5文件
model = load_model("C:\\python\\python3_projects\\cat_dog\\cats_dogs_fifty_thousand.h5")
model.summary()
#规范化图片大小和像素值
def get_inputs(src=[]):
  pre_x = []
  for s in src:
    input = cv2.imread(s)
    input = cv2.resize(input, (150, 150))
    input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
    pre_x.append(input) # input一张图片
  pre_x = np.array(pre_x) / 255.0
  return pre_x
#要预测的图片保存在这里
predict_dir = 'C:\python\python3_projects\cat_dog\pics'
#这个路径下有两个文件,分别是cat和dog
test = os.listdir(predict_dir)
#打印后:['cat', 'dog']
print(test)
#新建一个列表保存预测图片的地址
images = []
#获取每张图片的地址,并保存在列表images中
for testpath in test:
  for fn in os.listdir(os.path.join(predict_dir, testpath)):
    if fn.endswith('jpg'):
      fd = os.path.join(predict_dir, testpath, fn)
      print(fd)
      images.append(fd)
#调用函数,规范化图片
pre_x = get_inputs(images)
#预测
pre_y = model.predict(pre_x)
print(pre_y)

以上这篇利用keras加载训练好的.H5文件,并实现预测图片就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python 文件数据读写的具体实现
下一篇:keras模型可视化,层可视化及kernel可视化实例
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap