脚本专栏 
首页 > 脚本专栏 > 浏览文章

浅谈pytorch卷积核大小的设置对全连接神经元的影响

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

3*3卷积核与2*5卷积核对神经元大小的设置

#这里kerner_size = 2*5
class CONV_NET(torch.nn.Module): #CONV_NET类继承nn.Module类
 def __init__(self):
  super(CONV_NET, self).__init__() #使CONV_NET类包含父类nn.Module的所有属性
  # super()需要两个实参,子类名和对象self
  self.conv1 = nn.Conv2d(1, 32, (2, 5), 1, padding=0)
  self.conv2 = nn.Conv2d(32, 128, 1, 1, padding=0)
  self.fc1 = nn.Linear(512, 128)
  self.relu1 = nn.ReLU(inplace=True)
  self.drop1 = nn.Dropout(0.5)
  self.fc2 = nn.Linear(128, 32)
  self.relu2 = nn.ReLU(inplace=True)
  self.fc3 = nn.Linear(32, 3)
  self.softmax = nn.Softmax(dim=1)

 def forward(self, x):
  x = self.conv1(x)
  x = self.conv2(x)
  x = x.view(x.size(0), -1)
  x = self.fc1(x)
  x = self.relu1(x)
  x = self.drop1(x)
  x = self.fc2(x)
  x = self.relu2(x)
  x = self.fc3(x)
  x = self.softmax(x)
  return x

主要看对称卷积核以及非对称卷积核之间的计算方式

#这里kerner_size = 3*3
class CONV_NET(torch.nn.Module): #CONV_NET类继承nn.Module类
 def __init__(self):
  super(CONV_NET, self).__init__() #使CONV_NET类包含父类nn.Module的所有属性
  # super()需要两个实参,子类名和对象self
  self.conv1 = nn.Conv2d(1, 32, 3, 1, padding=1)
  self.conv2 = nn.Conv2d(32, 128, 1, 1, padding=0)
  self.fc1 = nn.Linear(3200, 128)
  self.relu1 = nn.ReLU(inplace=True)
  self.drop1 = nn.Dropout(0.5)
  self.fc2 = nn.Linear(128, 32)
  self.relu2 = nn.ReLU(inplace=True)
  self.fc3 = nn.Linear(32, 3)
  self.softmax = nn.Softmax(dim=1)

 def forward(self, x):
  x = self.conv1(x)
  x = self.conv2(x)
  x = x.view(x.size(0), -1)
  x = self.fc1(x)
  x = self.relu1(x)
  x = self.drop1(x)
  x = self.fc2(x)
  x = self.relu2(x)
  x = self.fc3(x)
  x = self.softmax(x)
  return x

针对kerner_size=2*5,padding=0,stride=1以及kerner_size=3*3,padding=1,stride=1二者计算方式的比较如图所示

浅谈pytorch卷积核大小的设置对全连接神经元的影响

以上这篇浅谈pytorch卷积核大小的设置对全连接神经元的影响就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:在pytorch中对非叶节点的变量计算梯度实例
下一篇:python颜色随机生成器的实例代码
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap