pytorch nn.Conv2d()中的padding以及输出大小方式
(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )
我就废话不多说了,直接上代码吧!
conv1=nn.Conv2d(1,2,kernel_size=3,padding=1) conv2=nn.Conv2d(1,2,kernel_size=3) inputs=torch.Tensor([[[[1,2,3], [4,5,6], [7,8,9]]]]) print("input size: ",inputs.shape) outputs1=conv1(inputs) print("output1 size: ",outputs1.shape) outputs2=conv2(inputs) print("output2 size: ",outputs2.shape) 输出: input size: torch.Size([1, 1, 3, 3]) output1 size: torch.Size([1, 2, 3, 3]) output2 size: torch.Size([1, 2, 1, 1])
padding是指卷积前进行padding,这样保证输出的图像形状大小与输入相同,但是通道数channel改变了。
以上这篇pytorch nn.Conv2d()中的padding以及输出大小方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
下一篇:如何给Python代码进行加密