脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch nn.Conv2d()中的padding以及输出大小方式

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

我就废话不多说了,直接上代码吧!

conv1=nn.Conv2d(1,2,kernel_size=3,padding=1)
conv2=nn.Conv2d(1,2,kernel_size=3)
 
inputs=torch.Tensor([[[[1,2,3],
           [4,5,6],
           [7,8,9]]]])
print("input size: ",inputs.shape)
outputs1=conv1(inputs)
print("output1 size: ",outputs1.shape)
outputs2=conv2(inputs)
print("output2 size: ",outputs2.shape)
 
输出:
input size: torch.Size([1, 1, 3, 3])
output1 size: torch.Size([1, 2, 3, 3])
output2 size: torch.Size([1, 2, 1, 1])

padding是指卷积前进行padding,这样保证输出的图像形状大小与输入相同,但是通道数channel改变了。

以上这篇pytorch nn.Conv2d()中的padding以及输出大小方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python GUI自动化实现绕过验证码登录
下一篇:如何给Python代码进行加密
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap