脚本专栏 
首页 > 脚本专栏 > 浏览文章

PyTorch学习:动态图和静态图的例子

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

动态图和静态图

目前神经网络框架分为静态图框架和动态图框架,PyTorch 和 TensorFlow、Caffe 等框架最大的区别就是他们拥有不同的计算图表现形式。 TensorFlow 使用静态图,这意味着我们先定义计算图,然后不断使用它,而在 PyTorch 中,每次都会重新构建一个新的计算图。通过这次课程,我们会了解静态图和动态图之间的优缺点。

对于使用者来说,两种形式的计算图有着非常大的区别,同时静态图和动态图都有他们各自的优点,比如动态图比较方便debug,使用者能够用任何他们喜欢的方式进行debug,同时非常直观,而静态图是通过先定义后运行的方式,之后再次运行的时候就不再需要重新构建计算图,所以速度会比动态图更快。

# tensorflow
import tensorflow as tf
first_counter = tf.constant(0)
second_counter = tf.constant(10)
# tensorflow
import tensorflow as tf
first_counter = tf.constant(0)
second_counter = tf.constant(10)
def cond(first_counter, second_counter, *args):
  return first_counter < second_counter
def body(first_counter, second_counter):
  first_counter = tf.add(first_counter, 2)
  second_counter = tf.add(second_counter, 1)
  return first_counter, second_counter
c1, c2 = tf.while_loop(cond, body, [first_counter, second_counter])
with tf.Session() as sess:
  counter_1_res, counter_2_res = sess.run([c1, c2])
print(counter_1_res)
print(counter_2_res)

可以看到 TensorFlow 需要将整个图构建成静态的,换句话说,每次运行的时候图都是一样的,是不能够改变的,所以不能直接使用 Python 的 while 循环语句,需要使用辅助函数 tf.while_loop 写成 TensorFlow 内部的形式

# pytorch
import torch
first_counter = torch.Tensor([0])
second_counter = torch.Tensor([10])
 
while (first_counter < second_counter)[0]:
  first_counter += 2
  second_counter += 1
 
print(first_counter)
print(second_counter)

可以看到 PyTorch 的写法跟 Python 的写法是完全一致的,没有任何额外的学习成本

以上这篇PyTorch学习:动态图和静态图的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:pytorch 实现在预训练模型的 input上增减通道
下一篇:Python 将json序列化后的字符串转换成字典(推荐)
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap