脚本专栏 
首页 > 脚本专栏 > 浏览文章

将tensorflow.Variable中的某些元素取出组成一个新的矩阵示例

(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )

在神经网络计算过程中,经常会遇到需要将矩阵中的某些元素取出并且单独进行计算的步骤(例如MLE,Attention等操作)。那么在 tensorflow 的 Variable 类型中如何做到这一点呢?

首先假设 Variable 是一个一维数组 A:

import numpy as np

import tensorflow as tf

a = np.array([1, 2, 3, 4, 5, 6, 7, 8])

A = tf.Variable(a)

我们把我们想取出的元素的索引存到 B 中,如果我们只想取出数组 A 中的某一个元素,则 B 的设定为:

b = np.array([3])

B = tf.placeholder(dtype=tf.int32, shape=[1])

由于我们的索引坐标只有一维,所以 shape=1。

取出元素然后组合成tensor C 的操作如下:

C = tf.gather_nd(A, B)

运行:

init = tf.global_variables_initializer()

with tf.Session() as sess:
  init.run()
  feed_dict = {B: b}
  result = sess.run([C], feed_dict=feed_dict)
  print result

得到:

[4]

如果我们想取出一维数组中的多个元素,则需要把每一个想取出的元素索引都单独放一行:

b = np.array([[3], [2], [5], [0]])

B = tf.placeholder(dtype=tf.int32, shape=[4, 1])

此时由于我们想要从一维数组中索引 4 个数,所以 shape=[4, 1]

再次运行得到:

[4 3 6 1]

////////////////////////////////////////////////////////////////////////////////////华丽丽的分割线

假设 Variable 是一个二维矩阵 A:

a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

A = tf.Variable(a)

首先我们先取出 A 中的一个元素,需要给定该元素的行列坐标,存到 B 中:

b = np.array([2,3])

B = tf.placeholder(dtype=tf.int32, shape=[2])

注意由于我们输入的索引坐标变成了二维,所以shape也变为2。

取出元素然后组合成tensor C:

C = tf.gather_nd(A, B)

运行:

init = tf.global_variables_initializer()

with tf.Session() as sess:
  init.run()
  feed_dict = {B: b}
  result = sess.run([C], feed_dict=feed_dict)
  print result

得到:

[12]

同样的,如果我们想取出二维矩阵中的多个元素,则需要把每一个想取出的元素的索引都单独放一行:

b = np.array([[2, 3], [1, 0], [2, 2], [0, 1]])

B = tf.placeholder(dtype=tf.int32, shape=[4, 2])

此时由于我们想要从二维矩阵中索引出 4 个数,所以 shape=[4, 2]

再次运行得到:

[12 5 11 2]

////////////////////////////////////////////////////////////////////////////////////华丽丽的分割线

推广到 n 维矩阵中:

假设 A 是 Variable 类型的 n 维矩阵,我们想取出矩阵中的 m 个元素,那么首先每个元素的索引坐标要表示成列表的形式:

index = [x1, x2, x3, ..., xn]

其中 xj 代表该元素在 n 维矩阵中第 j 维的位置。

其次每个坐标要单独占索引矩阵的一行:

index_matrix = [[x11, x12, x13, ..., x1n],

               [x21, x22, x23, ..., x2n],

               [x31, x32, x33, ..., x3n],

               .......................................,

               [xm1, xm2, xm3, ..., xmn]]

最后用 tf.gather_nd() 函数替换即可:

result = tf.gather_nd(A, index_matrix)

////////////////////////////////////////////////////////////////////////////////////华丽丽的分割线

[注] 问题出自:https://stackoverflow.com/questions/44793286/slicing-tensorflow-tensor-with-tensor

以上这篇将tensorflow.Variable中的某些元素取出组成一个新的矩阵示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:基于TensorFlow常量、序列以及随机值生成实例
下一篇:Tensorflow 实现分批量读取数据
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap