脚本专栏 
首页 > 脚本专栏 > 浏览文章

numpy实现神经网络反向传播算法的步骤

(编辑:jimmy 日期: 2025/1/17 浏览:3 次 )

一、任务

实现一个4 层的全连接网络实现二分类任务,网络输入节点数为2,隐藏层的节点数设计为:25,50,25,输出层2 个节点,分别表示属于类别1 的概率和类别2 的概率,如图所示。我们并没有采用Softmax 函数将网络输出概率值之和进行约束,而是直接利用均方差误差函数计算与One-hot 编码的真实标签之间的误差,所有的网络激活函数全部采用Sigmoid 函数,这些设计都是为了能直接利用梯度推导公式。

numpy实现神经网络反向传播算法的步骤

二、数据集

通过scikit-learn 库提供的便捷工具生成2000 个线性不可分的2 分类数据集,数据的特征长度为2,采样出的数据分布如图 所示,所有的红色点为一类,所有的蓝色点为一类,可以看到数据的分布呈月牙状,并且是是线性不可分的,无法用线性网络获得较好效果。为了测试网络的性能,按照7: 3比例切分训练集和测试集,其中2000 "htmlcode">

import matplotlib.pyplot as plt
import seaborn as sns #要注意的是一旦导入了seaborn,matplotlib的默认作图风格就会被覆盖成seaborn的格式
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
N_SAMPLES = 2000 # 采样点数
TEST_SIZE = 0.3 # 测试数量比率
# 利用工具函数直接生成数据集
X, y = make_moons(n_samples = N_SAMPLES, noise=0.2, random_state=100)
# 将2000 个点按着7:3 分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=TEST_SIZE, random_state=42)
print(X.shape, y.shape)
# 绘制数据集的分布,X 为2D 坐标,y 为数据点的标签
def make_plot(X, y, plot_name, file_name=None, XX=None, YY=None, preds=None,dark=False):
  if (dark):
    plt.style.use('dark_background')
  else:
    sns.set_style("whitegrid")
  plt.figure(figsize=(16,12))
  axes = plt.gca()
  axes.set(xlabel="$x_1$", ylabel="$x_2$")
  plt.title(plot_name, fontsize=30)
  plt.subplots_adjust(left=0.20)
  plt.subplots_adjust(right=0.80)
  if(XX is not None and YY is not None and preds is not None):
    plt.contourf(XX, YY, preds.reshape(XX.shape), 25, alpha = 1,cmap=plt.cm.Spectral)
    plt.contour(XX, YY, preds.reshape(XX.shape), levels=[.5],cmap="Greys", vmin=0, vmax=.6)
  # 绘制散点图,根据标签区分颜色
  plt.scatter(X[:, 0], X[:, 1], c=y.ravel(), s=40, cmap=plt.cm.Spectral,edgecolors='none')
  plt.savefig('dataset.svg')
  plt.close()
# 调用make_plot 函数绘制数据的分布,其中X 为2D 坐标,y 为标签
make_plot(X, y, "Classification Dataset Visualization ")
plt.show()

numpy实现神经网络反向传播算法的步骤

三、网络层

通过新建类Layer 实现一个网络层,需要传入网络层的数据节点数,输出节点数,激活函数类型等参数,权值weights 和偏置张量bias 在初始化时根据输入、输出节点数自动生成并初始化:

class Layer:
  # 全连接网络层
  def __init__(self, n_input, n_neurons, activation=None, weights=None,
         bias=None):
    """
    :param int n_input: 输入节点数
    :param int n_neurons: 输出节点数
    :param str activation: 激活函数类型
    :param weights: 权值张量,默认类内部生成
    :param bias: 偏置,默认类内部生成
    """
 
    # 通过正态分布初始化网络权值,初始化非常重要,不合适的初始化将导致网络不收敛
    self.weights = weights if weights is not None else
    np.random.randn(n_input, n_neurons) * np.sqrt(1 / n_neurons)
    self.bias = bias if bias is not None else np.random.rand(n_neurons) *0.1
    self.activation = activation # 激活函数类型,如'sigmoid'
    self.last_activation = None # 激活函数的输出值o
    self.error = None # 用于计算当前层的delta 变量的中间变量
    self.delta = None # 记录当前层的delta 变量,用于计算梯度
 
  def activate(self, x):
    # 前向传播
    r = np.dot(x, self.weights) + self.bias # X@W+b
    # 通过激活函数,得到全连接层的输出o
    self.last_activation = self._apply_activation(r)
    return self.last_activation
  # 其中self._apply_activation 实现了不同的激活函数的前向计算过程:
  def _apply_activation(self, r):
 
    # 计算激活函数的输出
    if self.activation is None:
      return r # 无激活函数,直接返回
    # ReLU 激活函数
    elif self.activation == 'relu':
      return np.maximum(r, 0)
    # tanh
    elif self.activation == 'tanh':
      return np.tanh(r)
    # sigmoid
    elif self.activation == 'sigmoid':
      return 1 / (1 + np.exp(-r))
    return r
 
  # 针对于不同的激活函数,它们的导数计算实现如下:
  def apply_activation_derivative(self, r):
 
    # 计算激活函数的导数
    # 无激活函数,导数为1
    if self.activation is None:
      return np.ones_like(r)
    # ReLU 函数的导数实现
    elif self.activation == 'relu':
      grad = np.array(r, copy=True)
      grad[r > 0] = 1.
      grad[r <= 0] = 0.
      return grad
    # tanh 函数的导数实现
    elif self.activation == 'tanh':
      return 1 - r ** 2
    # Sigmoid 函数的导数实现
    elif self.activation == 'sigmoid':
      return r * (1 - r)
    return r

四、网络模型

完成单层网络类后,再实现网络模型的类NeuralNetwork,它内部维护各层的网络层Layer 类对象,可以通过add_layer 函数追加网络层,实现如下:

class NeuralNetwork:
  # 神经网络大类
  def __init__(self):
    self._layers = [] # 网络层对象列表
  def add_layer(self, layer):
    # 追加网络层
    self._layers.append(layer)
  # 网络的前向传播只需要循环调用个网络层对象的前向计算函数即可
  def feed_forward(self, X):
    # 前向传播
    for layer in self._layers:
      # 依次通过各个网络层
      X = layer.activate(X)
    return X
 
  #网络模型的反向传播实现稍复杂,需要从最末层开始,计算每层的"color: #ff0000">五、实例化NeuralNetwork类,进行训练

nn = NeuralNetwork() # 实例化网络类
nn.add_layer(Layer(2, 25, 'sigmoid')) # 隐藏层1, 2=>25
nn.add_layer(Layer(25, 50, 'sigmoid')) # 隐藏层2, 25=>50
nn.add_layer(Layer(50, 25, 'sigmoid')) # 隐藏层3, 50=>25
nn.add_layer(Layer(25, 2, 'sigmoid')) # 输出层, 25=>2
learning_rate = 0.01
max_epochs = 1000
nn.train(X_train, X_test, y_train, y_test, learning_rate,max_epochs)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Python中filter与lambda的结合使用详解
下一篇:节日快乐! Python画一棵圣诞树送给你
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap