脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python Sympy计算梯度、散度和旋度的实例

(编辑:jimmy 日期: 2025/1/17 浏览:3 次 )

sympy有个vector 模块,里面提供了求解标量场、向量场的梯度、散度、旋度等计算,官方参考连接:

http://docs.sympy.org/latest/modules/vector/index.html

sympy中计算梯度、散度和旋度主要有两种方式:

一个是使用"htmlcode">

## 1 gradient

C = CoordSys3D('C')
delop = Del() # nabla算子

# 标量场 f = x**2*y-xy
f = C.x**2*C.y - C.x*C.y

res = delop.gradient(f, doit=True) # 使用nabla算子
# res = delop(f).doit()
res = gradient(f) # 直接使用gradient

print(res) # (2*C.x*C.y - C.y)*C.i + (C.x**2 - C.x)*C.j

(2)计算散度

## divergence

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.dot(f, doit=True)

# res = divergence(f)

print(res) # 2*C.x*C.y - C.x,即2xy-x,向量场的散度是标量

(3)计算旋度

## curl

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.cross(f, doit=True)

# res = curl(f)

print(res) # (-C.x**2 - C.y)*C.k,即(-x**2-y)*k,向量场的旋度是向量

以上这篇Python Sympy计算梯度、散度和旋度的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:用python求一重积分和二重积分的例子
下一篇:解决Numpy中sum函数求和结果维度的问题
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap