脚本专栏 
首页 > 脚本专栏 > 浏览文章

如何用OpenCV -python3实现视频物体追踪

(编辑:jimmy 日期: 2025/1/17 浏览:3 次 )

opencv

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。该库也有大量的Python、Java and MATLAB/OCTAVE(版本2.5)的接口。这些语言的API接口函数可以通过在线文档获得。如今也提供对于C#、Ch、Ruby,GO的支持。

所有新的开发和算法都是用C++接口。一个使用CUDA的GPU接口也于2010年9月开始实现。

import numpy as np
import cv2
cap =cv2.VideoCapture(0)
while(1):
  #获取每一帧
  ret,frame = cap.read()
  #RGB转换到HSV
  hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
  #设定蓝色的阈值。确定要追踪的颜色为蓝色。
  lower_blue = np.array([100,50,50])
  upper_blue = np.array([120,255,255])
  #根据阈值构建掩模,构建黑白图
  #hsv:原图
  #lower_blue:图像中低于这个lower_blue的值,图像值变为0,即黑色
  #upper_blue:图像中高于这个upper_blue的值,图像值变为0
  #而在lower_blue~upper_blue之间的值变成255,即白色。
  mask = cv2.inRange(hsv,lower_blue,upper_blue)
  #对原图像和掩模进行位运算
  #蓝色覆盖白色区域,黑色不覆盖,实现了白色转化为要追踪的蓝色,也就是追踪效果。
  res = cv2.bitwise_and(frame,frame,mask=mask)
  #显示图像
  cv2.imshow('frame',frame)
  cv2.imshow('mask',mask)
  cv2.imshow('res',res)
  k = cv2.waitKey(5)& 0xFF
  if k==27:
    break
#关闭窗口
cv2.destroyAllWindows()

关于颜色阈值图(百度)。

如何用OpenCV -python3实现视频物体追踪

结果如下图所示。

如何用OpenCV -python3实现视频物体追踪

总结

以上所述是小编给大家介绍的如何用OpenCV -python3实现视频物体追踪,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

上一篇:Django配置文件代码说明
下一篇:python实现回旋矩阵方式(旋转矩阵)
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap