脚本专栏 
首页 > 脚本专栏 > 浏览文章

50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶、视频监控、工业质检、医疗诊断等场景。

50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

目标检测的根本任务就是将图片或者视频中感兴趣的目标提取出来,目标的识别可以基于颜色、纹理、形状。其中颜色属性运用十分广泛,也比较容易实现。下面就向大家分享一个我做的小实验———通过OpenCV的Python接口来实现从视频中进行颜色识别和跟踪。

下面就是我们完整的代码实现(已调试运行):

import numpy as np
import cv2
font = cv2.FONT_HERSHEY_SIMPLEX
lower_green = np.array([35, 110, 106]) # 绿色范围低阈值
upper_green = np.array([77, 255, 255]) # 绿色范围高阈值
lower_red = np.array([0, 127, 128]) # 红色范围低阈值
upper_red = np.array([10, 255, 255]) # 红色范围高阈值
#需要更多颜色,可以去百度一下HSV阈值!
# cap = cv2.VideoCapture('1.mp4') # 打开视频文件
cap = cv2.VideoCapture(0)#打开USB摄像头
if (cap.isOpened()): # 视频打开成功
 flag = 1
else:
 flag = 0
num = 0
if (flag):
 while (True):
 ret, frame = cap.read() # 读取一帧
 
 if ret == False: # 读取帧失败
  break
 hsv_img = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 mask_green = cv2.inRange(hsv_img, lower_green, upper_green) # 根据颜色范围删选
 mask_red = cv2.inRange(hsv_img, lower_red, upper_red) 
 # 根据颜色范围删选
 mask_green = cv2.medianBlur(mask_green, 7) # 中值滤波
 mask_red = cv2.medianBlur(mask_red, 7) # 中值滤波
 mask = cv2.bitwise_or(mask_green, mask_red)
 mask_green, contours, hierarchy = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 mask_red, contours2, hierarchy2 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

 for cnt in contours:
  (x, y, w, h) = cv2.boundingRect(cnt)
  cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2)
  cv2.putText(frame, "Green", (x, y - 5), font, 0.7, (0, 255, 0), 2)

 for cnt2 in contours2:
  (x2, y2, w2, h2) = cv2.boundingRect(cnt2)
  cv2.rectangle(frame, (x2, y2), (x2 + w2, y2 + h2), (0, 255, 255), 2)
  cv2.putText(frame, "Red", (x2, y2 - 5), font, 0.7, (0, 0, 255), 2)
 num = num + 1
 cv2.imshow("dection", frame)
 cv2.imwrite("imgs/%d.jpg"%num, frame)
 if cv2.waitKey(20) & 0xFF == 27:
  break
cv2.waitKey(0)
cv2.destroyAllWindows()

如图所示,我们将会检测到红色区域

50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

最终的效果图:

50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

总结

以上所述是小编给大家介绍的50行Python代码实现视频中物体颜色识别和跟踪,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

上一篇:Python 函数绘图及函数图像微分与积分
下一篇:python抓取多种类型的页面方法实例
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap