脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python求解正态分布置信区间教程

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

Python求解正态分布置信区间教程

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

Python求解正态分布置信区间教程

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python pandas RFM模型应用实例详解
下一篇:使用Python实现正态分布、正态分布采样
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap