脚本专栏 
首页 > 脚本专栏 > 浏览文章

python KNN算法实现鸢尾花数据集分类

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

一、knn算法描述

1.基本概述

knn算法,又叫k-近邻算法。属于一个分类算法,主要思想如下:
一个样本在特征空间中的k个最近邻的样本中的大多数都属于某一个类别,则该样本也属于这个类别。其中k表示最近邻居的个数。

用二维的图例,说明knn算法,如下:

python KNN算法实现鸢尾花数据集分类

二维空间下数据之间的距离计算:

python KNN算法实现鸢尾花数据集分类

在n维空间两个数据之间:

python KNN算法实现鸢尾花数据集分类

2.具体步骤:
(1)计算待测试数据与各训练数据的距离
(2)将计算的距离进行由小到大排序
(3)找出距离最小的k个值
(4)计算找出的值中每个类别的频次
(5)返回频次最高的类别

二、鸢尾花数据集

Iris 鸢尾花数据集内包含 3 类分别为山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica),共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,可以通过这4个特征预测鸢尾花卉属于哪一品种。

iris数据集包含在sklearn库当中,具体在sklearn\datasets\data文件夹下,文件名为iris.csv。以本机为例。其路径如下:
D:\python\lib\site-packages\sklearn\datasets\data\iris.csv

其中数据如下格式:

python KNN算法实现鸢尾花数据集分类

第一行数据意义如下:
150:数据集中数据的总条数
4:特征值的类别数,即花萼长度、花萼宽度、花瓣长度、花瓣宽度。
setosa、versicolor、virginica:三种鸢尾花名

从第二行开始:
第一列为花萼长度值
第二列为花萼宽度值
第三列为花瓣长度值
第四列为花瓣宽度值
第五列对应是种类(三类鸢尾花分别用0,1,2表示)

三、算法实现

1.算法流程图:

python KNN算法实现鸢尾花数据集分类

从以上流程图可以看出,knn算法包含后四步操作,所以将整个程序分为三个模块。

2.具体实现

(1)方法一
①利用slearn库中的load_iris()导入iris数据集 
②使用train_test_split()对数据集进行划分
③KNeighborsClassifier()设置邻居数
④利用fit()构建基于训练集的模型
⑤使用predict()进行预测
⑥使用score()进行模型评估
说明:本代码来源于《Python机器学习基础教程》在此仅供学习使用。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np

# 载入数据集
iris_dataset = load_iris()

# 数据划分
X_train, X_test, y_train, y_test = train_test_split(iris_dataset['data'], iris_dataset['target'], random_state=0)

# 设置邻居数
knn = KNeighborsClassifier(n_neighbors=1)

# 构建基于训练集的模型
knn.fit(X_train, y_train)


# 一条测试数据
X_new = np.array([[5, 2.9, 1, 0.2]])

# 对X_new预测结果
prediction = knn.predict(X_new)
print("预测值%d" % prediction)

# 得出测试集X_test测试集的分数
print("score:{:.2f}".format(knn.score(X_test,y_test)))

(2)方法二
①使用读取文件的方式,使用open、以及csv中的相关方法载入数据
②输入测试集和训练集的比率,对载入的数据使用shuffle()打乱后,计算训练集及测试集个数对特征值数据和对应的标签数据进行分割。
③将分割后的数据,计算测试集数据与每一个训练集的距离,使用norm()函数直接求二范数,或者载入数据使用np.sqrt(sum((test - train) ** 2))求得距离,使用argsort()将距离进行排序,并返回索引值,
④取出值最小的k个,获得其标签值,存进一个字典,标签值为键,出现次数为值,对字典进行按值的大小递减排序,将字典第一个键的值存入预测结果的列表中,计算完所有测试集数据后,返回一个列表。
⑤将预测结果与测试集本身的标签进行对比,得出分数。

import csv
import random
import numpy as np
import operator


def openfile(filename):

  """
  打开数据集,进行数据处理
  :param filename: 数据集的路径
  :return: 返回数据集的数据,标签,以及标签名
  """

  with open(filename) as csv_file:
    data_file = csv.reader(csv_file)
    temp = next(data_file)

    # 数据集中数据的总数量
    n_samples = int(temp[0])

    # 数据集中特征值的种类个数
    n_features = int(temp[1])

    # 标签名
    target_names = np.array(temp[2:])

    # empty()函数构造一个未初始化的矩阵,行数为数据集数量,列数为特征值的种类个数
    data = np.empty((n_samples, n_features))

    # empty()函数构造一个未初始化的矩阵,行数为数据集数量,1列,数据格式为int
    target = np.empty((n_samples,), dtype=np.int)

    for i, j in enumerate(data_file):

      # 将数据集中的将数据转化为矩阵,数据格式为float
      # 将数据中从第一列到倒数第二列中的数据保存在data中
      data[i] = np.asarray(j[:-1], dtype=np.float64)

      # 将数据集中的将数据转化为矩阵,数据格式为int
      # 将数据集中倒数第一列中的数据保存在target中
      target[i] = np.asarray(j[-1], dtype=np.int)

  # 返回 数据,标签 和标签名
  return data, target, target_names


def random_number(data_size):
  """
  该函数使用shuffle()打乱一个包含从0到数据集大小的整数列表。因此每次运行程序划分不同,导致结果不同

  改进:
  可使用random设置随机种子,随机一个包含从0到数据集大小的整数列表,保证每次的划分结果相同。

  :param data_size: 数据集大小
  :return: 返回一个列表
  """

  number_set = []
  for i in range(data_size):
    number_set.append(i)

  random.shuffle(number_set)

  return number_set


def split_data_set(data_set, target_data, rate=0.25):
  """
  说明:分割数据集,默认数据集的25%是测试集

  :param data_set: 数据集
  :param target_data: 标签数据
  :param rate: 测试集所占的比率
  :return: 返回训练集数据、训练集标签、训练集数据、训练集标签
  """

  # 计算训练集的数据个数
  train_size = int((1-rate) * len(data_set))

  # 获得数据
  data_index = random_number(len(data_set))

  # 分割数据集(X表示数据,y表示标签),以返回的index为下标
  x_train = data_set[data_index[:train_size]]

  x_test = data_set[data_index[train_size:]]

  y_train = target_data[data_index[:train_size]]

  y_test = target_data[data_index[train_size:]]
  return x_train, x_test, y_train, y_test


def data_diatance(x_test, x_train):
  """
  :param x_test: 测试集
  :param x_train: 训练集
  :return: 返回计算的距离
  """

  # sqrt_x = np.linalg.norm(test-train) # 使用norm求二范数(距离)
  distances = np.sqrt(sum((x_test - x_train) ** 2))
  return distances


def knn(x_test, x_train, y_train, k):
  """
  :param x_test: 测试集数据
  :param x_train: 训练集数据
  :param y_train: 测试集标签
  :param k: 邻居数
  :return: 返回一个列表包含预测结果
  """

  # 预测结果列表,用于存储测试集预测出来的结果
  predict_result_set=[]

  # 训练集的长度
  train_set_size = len(x_train)

  # 创建一个全零的矩阵,长度为训练集的长度
  distances = np.array(np.zeros(train_set_size))

  # 计算每一个测试集与每一个训练集的距离
  for i in x_test:
    for indx in range(train_set_size):

      # 计算数据之间的距离
      distances[indx] = data_diatance(i, x_train[indx])

    # 排序后的距离的下标
    sorted_dist = np.argsort(distances)

    class_count = {}

    # 取出k个最短距离
    for i in range(k):

      # 获得下标所对应的标签值
      sort_label = y_train[sorted_dist[i]]

      # 将标签存入字典之中并存入个数
      class_count[sort_label]=class_count.get(sort_label, 0) + 1

    # 对标签进行排序
    sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)

    # 将出现频次最高的放入预测结果列表
    predict_result_set.append(sorted_class_count[0][0])

  # 返回预测结果列表
  return predict_result_set


def score(predict_result_set, y_test):
  """

  :param predict_result_set: 预测结果列表
  :param y_test: 测试集标签
  :return: 返回测试集精度
  """
  count = 0
  for i in range(0, len(predict_result_set)):
    if predict_result_set[i] == y_test[i]:
      count += 1

  score = count / len(predict_result_set)

  return score


if __name__ == "__main__":

  iris_dataset = openfile('iris.csv')
  # x_new = np.array([[5, 2.9, 1, 0.2]])
  x_train, x_test, y_train, y_test = split_data_set(iris_dataset[0], iris_dataset[1])
  result = knn(x_test,x_train, y_train, 6)
  print("原有标签:", y_test)

  # 为了方便对比查看,此处将预测结果转化为array,可直接打印结果
  print("预测结果:", np.array(result))
  score = score(result, y_test)
  print("测试集的精度:%.2f" % score)

四、运行结果

python KNN算法实现鸢尾花数据集分类

python KNN算法实现鸢尾花数据集分类

python KNN算法实现鸢尾花数据集分类

结果不同,因为每次划分的训练集和测试集不同,具体见random_number()方法。

五、总结

在本次使用python实现knn算法时,遇到了很多困难,如数据集的加载,数据的格式不能满足后续需要,因此阅读了sklearn库中的一部分代码,有选择性的进行了复用。数据与标签无法分离,或是数据与标签排序后后无法对应的情况,查询许多资料后使用argsort()完美解决该问题。出现了n多错误,通过多次调试之后最终完成。

附:本次实验参考 :

①*郑捷《机器学习算法原理与编程实践》
②《Python机器学习基础教程》

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:window7下的python2.7版本和python3.5版本的opencv-python安装过程
下一篇:原生python实现knn分类算法
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap