脚本专栏 
首页 > 脚本专栏 > 浏览文章

深入浅析Python科学计算库Scipy及安装步骤

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

一、Scipy 入门

1.1、Scipy 简介及安装

官网:http://www.scipy.org/SciPy

安装:在C:\Python27\Scripts下打开cmd执行:

执行:pip install scipy

1.2、安装Anaconda及环境搭建(举例演示)

创建环境:conda create -n env_name python=3.6

示例:   conda create -n Py_36 python=3.6  #创建名为Py_367的环境

列出所有环境:conda info -e

进入环境:   source activate Py_36  (OSX/LINUX系统)

            activate Py_36          (windows系统)

1.3、jupyter 安装

jupyter简介:jupyter(Jupyter Notebook)是一个交互式笔记本

            支持运行40多种编程语言

            数据清理和转换,数值模拟,统计建模,机器学习等

jupyter 安装:conda install jupyter notebook

启动 jupyter:激活相应环境

在控制台执行 :jupyter notebook

notebook服务器运行地址:http://localhost:8888   

                新建(notebook,文本文件,文件夹)

关闭notebook:ctrl+c执行两次

jupyter notebook 使用:

    快捷键:shift+Enter     运行本单元,选中下个单元

           Ctrl+Enter      运行本单元,在其下方插入新单元
            Y              单元进入代码状态
            M              单元进入markdown状态
            A              在上方插入新单元
            B              在下方插入新单元
            X              剪切选中单元
            Shift+V        在上方粘贴单元      

1.4、scipy的'hello word'

需求:将一个多维数组保存a.mat文件,后加载该mat文件,获取内容并打印

步骤1:导入scipy需要的模块

    from scipy import io    #(需要使用的模块)

步骤2:利用savemat保存数据

  io.savemat(file_name,mdict)
  io.savemat('a.mat',{''array:a})


步骤3:利用 loadmat载入数据

  io.loadmat(file_name)
  data = io.loadmat('a.mat')

举例1:

from scipy import io    #导入io
import numpy as np    #导入numpy并命名为np 
arr = np.array([1,2,3,4,5,6])
io.savemat('test.mat',{'arr1':arr})
loadArr=io.loadmat('test.mat')

举例2

from matplotlib import pyplot as plt
from scipy import io
import numpy as np
matrix1 = np.arange(1,10).reshape(3,3)   #创建矩阵
io.savemat("matrix1.mat", {"array": matrix1}) #保存矩阵文件
data=io.loadmat('matrix1.mat')     #读取矩阵文件
print (data["array"])       #输出矩阵

p1 = np.random.normal(size = 10000) #新建随机数
plt.hist(p1)       #绘制柱形图
plt.show()       #显示

二、利用Scipy实现统计功能

需求:用Scipy的scipy.stats中的统计函数分析随机数
stats提供了产生连续性分布的函数
均匀分布(uniform)
                x=stats.uniform.rvs(size = 20) 生成20个[0,1]均匀分布随机数
-正态分布(norm)
                x=stats.norm.rvs(size = 20) 生成20个正态分布随机数
-贝塔分布(beta)
                x=stats.beta.rvs(size=20,a=3,b=4)生成20个服从参数a=3,b=4贝塔分布随机数
-离散分布
-伯努利分布(Bernoulli)
-几何分布(geom)
-泊松分布(poisson)
x=stats.poisson.rvs(0.6,loc=0,size = 20)生成20个服从泊松分布随机数

三、计算随机数均值和标准差

stats.norm.fit :利用正态分布去拟合生成的数据,得到其均值和标准差

四、计算随机数的偏度

1.概念:
                偏度(skewness)描述的是概率分布的偏度(非对称)程度。
                有两个返回值,第二个为p-value,即数据集服从正态分布的概率(0~1)

2 利用 stats.skewtest()计算偏度

五、计算随机数的峰度

1 概念:峰度(kurtosis)-描述的是概率分布曲线陡峭程度
2 利用 stats.kurtosis() 计算峰度
3 正态分布峰度值为3,excess_k为0
              低阔峰(platykurtic) 相对于正态分布来说更扁平 excess_k<0
              高狭峰(leptokurtic) 相对于正态分布来说更陡峭 excess_k>0

示例:(../Scipy/Test01/test1)

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

arr = stats.norm.rvs(size=900)
(mean,std) = stats.norm.fit(arr)
print('平均值',mean)  #mean平均值
print('std标准差',std)  #std标准差
(skewness,pvalue1) = stats.skewtest(arr)
print('偏度值') 
print(skewness)
print('符合正态分布数据的概率为')
print(pvalue1)
(Kurtosistest,pvalue2) = stats.kurtosistest(arr)
print('Kurtosistest',Kurtosistest) #峰度
print('pvalue2',pvalue2)
(Normltest,pvalue3) = stats.normaltest(arr)
print('Normltest',Normltest)   #服从正太分布度
print('pvalue3',pvalue3)
num = stats.scoreatpercentile(arr,95) #某一百分比处的数值
print('在95%处的数值:')    #某一百分比处的数值
print num
indexPercent = stats.percentileofscore(arr,1) #某一数值处的百分比
print ('在数值1处的百分比:')     #某一数值处的百分比
print indexPercent
plt.hist(arr) #设置直方图
plt.show()  #显示图

六、正态分布程度检验

1 正态性检验(normality test),同样返回两个值,第二个返回p-values
2 利用 检验      stats.normaltest()
        一般情况     pvalue>0.05                表示服从正态分布

七、计算数据所在区域中某一百分比处的数值

1 利用scoreatpercentile 计算在某一百分比位置的数值
                格式:scoreatpercentile (数据集、百分比)
                                   stats.scoreatpercentile(name_arr,percent)
2 示例:求出95%所在位置的数值

              

 num = stats.scoreatpercentile(arr,95) 
    print num

八、从某数值出发找到对应的百分比

利用percentileofscore计算在某数值对应的百分比
                格式:percentileofscore(数据集,数值)
                示例:indexPercent = stats.percentileofscore(arr,1)

九、直方图显示

import matplotlib.pyplot as plt

在Anaconda环境下(py36)C:\Users\lenovo>导入:conda install matplotlib
                plt.hist(arr) #设置直方图
                plt.show() #显示图

九、综合练习

1 求出考试分数的以下值:

均值          中位数       众数        极差          方差 
标准差        变异系数(均值/方差)       偏度          峰度

2 步骤1: 创建两个二维数组:[分数,出现次数]

arrEasy=np.array([[0,2],[2.5,4],[5,6],[7.5,9],[10,13],[12.5,16],[15,19],[17.5,23],
    [20,27],[22.5,31],[25,35],[27.5,40],[30,53],[32.5,68],[35,90],
    [37.5,110],[40,130],[42.5,148],[45,165],[47.5,182],[50,195],
    [52.5,208],[55,217],[57.5,226],[60,334],[62.5,342],[65,349],
    [67.5,500],[70,511],[72.5,300],[75,200],[77.5,80],[80,20]])
arrDiff=np.array([[0,20],[2.5,30],[5,45],[7.5,70],[10,100],[12.5,135],[15,170],
    [17.5,205],[20,226],[22.5,241],[25,251],[27.5,255],[30,256],
    [32.5,253],[35,249],[37.5,242],[40,234],[42.5,226],[45,217],
    [47.5,208],[50,195],[52.5,182],[55,165],[57.5,148],[60,130],
    [62.5,110],[65,40],[67.5,30],[70,20],[72.5,5],[75,5],[77.5,0],[80,0]])

步骤2:创建函数,将传入的多维数组扁平化->变成一维数组

方法1:

def createScore(arr):
 score = []   #所有学员分数
 row = arr.shape[0]
 for i in np.arange(0,row):
  for j in np.arange(0,int(arr[i][1])):
  score.append(arr[i][1]))
 score = np.array(score)
 return score

方法2

score_Easy, num_Easy = arrEasy[:,0],arrEasy[:,1] #所有行第一列;所有行第二列
score_Diff, num_Diff = arrDiff[:,0],arrDiff[:,1] #同上
print (score_Easy,num_Easy )
print (score_Diff,num_Diff )

步骤3:创建函数,根据传入数组,对其进行统计

def calStatValue(score):
 #集中趋势度量
 print('均值')
 print(np.mean(score))
 print('中位数')
 print(np.median(score))
 print('众数')
 print(stats.mode(score))
 #离散趋势度量
 print('极差')
 print(np.ptp(score))
 print('方差')
 print(np.var(score))
 print('标准差')
 print(np.std(score))
 print('变异系数')
 print(np.mean(score)/np.std(score))
 #偏度与峰度的度量
 print('偏度')
 print(stats.skewness(score))
 print('峰度')
 print(stats.Kurtosis(score))

步骤4:创建函数,做一个简单的箱线图/柱形图

def drawGraghic(score)
 plt.boxplot([score],labels['score']) #箱线图
 plt.title('箱线图')
 plt.show()
 plt.hist(score,100)
 plt.show()

步骤5:

步骤6:

案例完整代码:

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
def createScore(arr):
 score = []     #所有学员分数
 row = arr.shape[0]   #获取多少组元素
 for i in np.arange(0,row): #遍历所有元素组
  for j in np.arange(0,int(arr[i][1])):#从0开始填充次数,第i行第1列
   score.append(arr[i][0]))
 score = np.array(score)
 return score
_________________________________
使用切片获取分数
score_Easy, num_Easy = arrEasy[:,0],arrEasy[:,1] #所有行第一列;所有行第二列
score_Diff, num_Diff = arrDiff[:,0],arrDiff[:,1] #同上
print (score_Easy,num_Easy)   #查看分数,人数
print (score_Diff,num_Diff)   #同上
All_score_Easy = np.repeat(list(score_Easy),list(num_Easy)) #所有分数
All_score_Diff = np.repeat(list(score_Diff),list(num_Diff)) #所有分数
________________________________
def createOneScore():
 arrEasy=np.array([[0,2],[2.5,4],[5,6],[7.5,9],[10,13],[12.5,16],[15,19],[17.5,23],
    [20,27],[22.5,31],[25,35],[27.5,40],[30,53],[32.5,68],[35,90],
    [37.5,110],[40,130],[42.5,148],[45,165],[47.5,182],[50,195],
    [52.5,208],[55,217],[57.5,226],[60,334],[62.5,342],[65,349],
    [67.5,500],[70,511],[72.5,300],[75,200],[77.5,80],[80,20]])
 return createScore(arrOne)
def createTwoScore():  
 arrDiff=np.array([[0,20],[2.5,30],[5,45],[7.5,70],[10,100],[12.5,135],[15,170],
    [17.5,205],[20,226],[22.5,241],[25,251],[27.5,255],[30,256],
    [32.5,253],[35,249],[37.5,242],[40,234],[42.5,226],[45,217],
    [47.5,208],[50,195],[52.5,182],[55,165],[57.5,148],[60,130],
    [62.5,110],[65,40],[67.5,30],[70,20],[72.5,5],[75,5],[77.5,0],[80,0]])
 return createScore(arrTwo)
def calStatValue(score):
 #集中趋势度量
 print('均值')
 print(np.mean(score))
 print('中位数')
 print(np.median(score))
 print('众数')
 print(stats.mode(score))
 #离散趋势度量
 print('极差')
 print(np.ptp(score))
 print('方差')
 print(np.var(score))
 print('标准差')
 print(np.std(score))
 print('变异系数')
 print(np.mean(score)/np.std(score))
 #偏度与峰度的度量
 (skewness,pvalue1) = stats.skewtest(score) 
 print('偏度')
 print(stats.skewness(score))
 (Kurtosistest,pvalue2) = stats.kurtosistest(arr)
 print('峰度')
 print(stats.Kurtosis(score)) 
 return
#画图
def drawGraghic(score)
 plt.boxplot([score],labels['score']) #箱线图
 plt.title('箱线图')
 plt.show()
 plt.hist(score,100)
 plt.show()
 return

          总结

以上所述是小编给大家介绍的Python科学计算库—Scipy,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

上一篇:pandas 缺失值与空值处理的实现方法
下一篇:Django1.11配合uni-app发起微信支付的实现
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap