脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python 进程操作之进程间通过队列共享数据,队列Queue简单示例

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

本文实例讲述了Python 进程操作之进程间通过队列共享数据,队列Queue。分享给大家供大家参考,具体如下:

队列中的数据是放在内存中的,可以通过分布式缓存redis优化队列。

demo.py(进程通过队列共享数据):

import multiprocessing
def download_from_web(q):
  """下载数据"""
  # 模拟从网上下载的数据
  data = [11, 22, 33, 44]
  # 向队列中写入数据
  for temp in data:
    q.put(temp) # 队列中写数据,队列满了会阻塞。 put_nowait() 队列满了会抛异常
  print("---下载器已经下载完了数据并且存入到队列中----")
def analysis_data(q):
  """数据处理"""
  waitting_analysis_data = list()
  # 从队列中获取数据
  while True:
    data = q.get() # 队列中读数据,队列空了会阻塞。 get_nowait() 队列空了会抛异常
    waitting_analysis_data.append(data)
    if q.empty(): # 队列是否为空。 q.full() 队列是否满了。
      break
  # 模拟数据处理
  print(waitting_analysis_data)
def main():
  # 1. 创建一个队列 (先进先出)
  q = multiprocessing.Queue(10) # 最多放10个数据。 如果不指定长度,默认最大(和硬件相关)
  # 2. 创建多个进程,将队列的引用当做实参进行传递
  p1 = multiprocessing.Process(target=download_from_web, args=(q,))
  p2 = multiprocessing.Process(target=analysis_data, args=(q,))
  p1.start()
  p2.start()
if __name__ == "__main__":
  main()

运行结果:

---下载器已经下载完了数据并且存入到队列中----
[11, 22, 33, 44]

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

上一篇:Python Collatz序列实现过程解析
下一篇:python logging日志模块原理及操作解析
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap