脚本专栏 
首页 > 脚本专栏 > 浏览文章

python用线性回归预测股票价格的实现代码

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

线性回归在整个财务中广泛应用于众多应用程序中。在之前的教程中,我们使用普通最小二乘法(OLS)计算了公司的beta与相对索引的比较。现在,我们将使用线性回归来估计股票价格。

线性回归是一种用于模拟因变量(y)和自变量(x)之间关系的方法。通过简单的线性回归,只有一个自变量x。可能有许多独立变量属于多元线性回归的范畴。在这种情况下,我们只有一个自变量即日期。对于第一个日期上升到日期向量长度的整数,该日期将由1开始的整数表示,该日期可以根据时间序列数据而变化。当然,我们的因变量将是股票的价格。为了理解线性回归,您必须了解您可能在学校早期学到的相当基本的等式。

y = a + bx

  • Y =预测值或因变量
  • b =线的斜率
  • x =系数或自变量
  • a = y截距

从本质上讲,这将构成我们对数据的最佳拟合。在OLS过程中通过数据集绘制了大量线条。该过程的目标是找到最佳拟合线,最小化平方误差和(SSE)与股票价格(y)的实际值以及我们在数据集中所有点的预测股票价格。这由下图表示。对于绘制的每条线,数据集中的每个点与模型输出的相应预测值之间存在差异。将这些差异中的每一个加起来并平方以产生平方和。从列表中,我们采用最小值导致我们的最佳匹配线。考虑下图:

python用线性回归预测股票价格的实现代码

第一部分:获取数据:

from matplotlib import style
 
from sklearn.linear_model import LinearRegression
 
from sklearn.model_selection import train_test_split
 
import quandl
 
import datetime
 
style.use('ggplot')
 
#Dates
 
start_date = datetime.date(2017,1,3)
 
t_date=start_date, end_date=end_date, collapse="daily")
 
df = df.reset_index()
 
prices = np.reshape(prices, (len(prices), 1))

第二部分:创建一个回归对象:

', linewidth=3, label = 'Predicted Price') #plotting the line made by linear regression
 
plt.title('Linear Regression | Time vs. Price')
 
plt.legend()
 
predicted_price =regressor.predict(date)

输出:

python用线性回归预测股票价格的实现代码

预测日期输入价格:

创建训练/测试集

et
 
xtrain, x , ytrain)
 
#Train
 
plt.title('Linear Regression | Time vs. Price')
 
#Test Set Graph
 
plt.scatter(xtest, ytest, color='yellow', label= 'Actual Price') #plotting the initial datapoints
 
plt.plot(xtest, regressor.predict(xtest), color='blue', linewidth=3, label = 'Predicted Price') #plotting
 
plt.show()

输出:

python用线性回归预测股票价格的实现代码

测试集:

python用线性回归预测股票价格的实现代码

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:python实现静态服务器
下一篇:python编写简单端口扫描器
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap