Python数据分析模块pandas用法详解
(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )
本文实例讲述了Python数据分析模块pandas用法。分享给大家供大家参考,具体如下:
一 介绍
pandas(Python Data Analysis Library)是基于numpy的数据分析模块,提供了大量标准数据模型和高效操作大型数据集所需要的工具,可以说pandas是使得Python能够成为高效且强大的数据分析环境的重要因素之一。
pandas主要提供了3种数据结构:
1)Series,带标签的一维数组。
2)DataFrame,带标签且大小可变的二维表格结构。
3)Panel,带标签且大小可变的三维数组。
二 代码
1、生成一维数组
>import pandas as pd >import numpy as np > x = pd.Series([1,3,5, np.nan]) >print(x) 01.0 13.0 25.0 3NaN dtype: float64
2、生成二维数组
> dates = pd.date_range(start='20170101', end='20171231', freq='D')#间隔为天 >print(dates) DatetimeIndex(['2017-01-01','2017-01-02','2017-01-03','2017-01-04', '2017-01-05','2017-01-06','2017-01-07','2017-01-08', '2017-01-09','2017-01-10', ... '2017-12-22','2017-12-23','2017-12-24','2017-12-25', '2017-12-26','2017-12-27','2017-12-28','2017-12-29', '2017-12-30','2017-12-31'], dtype='datetime64[ns]', length=365, freq='D') > dates = pd.date_range(start='20170101', end='20171231', freq='M')#间隔为月 >print(dates) DatetimeIndex(['2017-01-31','2017-02-28','2017-03-31','2017-04-30', '2017-05-31','2017-06-30','2017-07-31','2017-08-31', '2017-09-30','2017-10-31','2017-11-30','2017-12-31'], dtype='datetime64[ns]', freq='M') > df = pd.DataFrame(np.random.randn(12,4), index=dates, columns=list('ABCD')) >print(df) A B C D 2017-01-31-0.6825560.2441020.4508550.236475 2017-02-28-0.6300600.5906670.4824380.225697 2017-03-311.0669890.3193391.0949531.716053 2017-04-300.334944-0.053049-1.009493-1.039470 2017-05-31-0.380778-0.0444290.0756470.931243 2017-06-300.8675400.872197-0.738974-1.114596 2017-07-310.423371-1.0863860.183820-0.438921 2017-08-311.2851630.634134-0.4729731.281057 2017-09-30-1.002832-0.888122-1.316014-0.070637 2017-10-311.735617-0.2538150.5544031.536211 2017-11-302.0303840.6675561.0126980.239479 2017-12-312.059718-0.0890501.4205170.224578 > df = pd.DataFrame([[np.random.randint(1,100)for j in range(4)]for i in range(12)], index=dates, columns=list('ABCD')) >print(df) A B C D 2017-01-317532522 2017-02-2870997098 2017-03-3199477567 2017-04-3033701749 2017-05-3162886891 2017-06-3019751844 2017-07-3150856582 2017-08-315628776 2017-09-306173111 2017-10-318296692 2017-11-306359194 2017-12-3179586933 > df = pd.DataFrame({'A':[np.random.randint(1,100)for i in range(4)], 'B':pd.date_range(start='20130101', periods=4, freq='D'), 'C':pd.Series([1,2,3,4],index=list(range(4)),dtype='float32'), 'D':np.array([3]*4,dtype='int32'), 'E':pd.Categorical(["test","train","test","train"]), 'F':'foo'}) >print(df) A B C D E F 0152013-01-011.03 test foo 1112013-01-022.03 train foo 2912013-01-033.03 test foo 3912013-01-044.03 train foo > df = pd.DataFrame({'A':[np.random.randint(1,100)for i in range(4)], 'B':pd.date_range(start='20130101', periods=4, freq='D'), 'C':pd.Series([1,2,3,4],index=['zhang','li','zhou','wang'],dtype='float32'), 'D':np.array([3]*4,dtype='int32'), 'E':pd.Categorical(["test","train","test","train"]), 'F':'foo'}) >print(df) A B C D E F zhang 362013-01-011.03 test foo li 862013-01-022.03 train foo zhou 102013-01-033.03 test foo wang 792013-01-044.03 train foo >
3、二维数据查看
> df.head() #默认显示前5行 A B C D E F zhang 362013-01-011.03 test foo li 862013-01-022.03 train foo zhou 102013-01-033.03 test foo wang 792013-01-044.03 train foo > df.head(3) #查看前3行 A B C D E F zhang 362013-01-011.03 test foo li 862013-01-022.03 train foo zhou 102013-01-033.03 test foo > df.tail(2) #查看最后2行 A B C D E F zhou 102013-01-033.03 test foo wang 792013-01-044.03 train foo
4、查看二维数据的索引、列名和数据
> df.index Index(['zhang','li','zhou','wang'], dtype='object') > df.columns Index(['A','B','C','D','E','F'], dtype='object') > df.values array([[36,Timestamp('2013-01-01 00:00:00'),1.0,3,'test','foo'], [86,Timestamp('2013-01-02 00:00:00'),2.0,3,'train','foo'], [10,Timestamp('2013-01-03 00:00:00'),3.0,3,'test','foo'], [79,Timestamp('2013-01-04 00:00:00'),4.0,3,'train','foo']], dtype=object)
5、查看数据的统计信息
> df.describe() #平均值、标准差、最小值、最大值等信息 A C D count 4.0000004.0000004.0 mean 52.7500002.5000003.0 std 36.0682221.2909940.0 min 10.0000001.0000003.0 25%29.5000001.7500003.0 50%57.5000002.5000003.0 75%80.7500003.2500003.0 max 86.0000004.0000003.0
6、二维数据转置
> df.T zhang li zhou A 368610 B 2013-01-0100:00:002013-01-0200:00:002013-01-0300:00:00 C 123 D 333 E test train test F foo foo foo wang A 79 B 2013-01-0400:00:00 C 4 D 3 E train F foo
7、排序
> df.sort_index(axis=0, ascending=False)#对轴进行排序 A B C D E F zhou 102013-01-033.03 test foo zhang 362013-01-011.03 test foo wang 792013-01-044.03 train foo li 862013-01-022.03 train foo > df.sort_index(axis=1, ascending=False) F E D C B A zhang foo test 31.02013-01-0136 li foo train 32.02013-01-0286 zhou foo test 33.02013-01-0310 wang foo train 34.02013-01-0479 > df.sort_index(axis=0, ascending=True) A B C D E F li 862013-01-022.03 train foo wang 792013-01-044.03 train foo zhang 362013-01-011.03 test foo zhou 102013-01-033.03 test foo > df.sort_values(by='A')#对数据进行排序 A B C D E F zhou 102013-01-033.03 test foo zhang 362013-01-011.03 test foo wang 792013-01-044.03 train foo li 862013-01-022.03 train foo > df.sort_values(by='A', ascending=False)#降序排列 A B C D E F li 862013-01-022.03 train foo wang 792013-01-044.03 train foo zhang 362013-01-011.03 test foo zhou 102013-01-033.03 test foo
8、数据选择
> df['A']#选择列 zhang 1 li 1 zhou 60 wang 58 Name: A, dtype: int64 > df[0:2]#使用切片选择多行 A B C D E F zhang 12013-01-011.03 test foo li 12013-01-022.03 train foo > df.loc[:,['A','C']]#选择多列 A C zhang 11.0 li 12.0 zhou 603.0 wang 584.0 > df.loc[['zhang','zhou'],['A','D','E']]#同时指定多行与多列进行选择 A D E zhang 13 test zhou 603 test > df.loc['zhang',['A','D','E']] A 1 D 3 E test Name: zhang, dtype: object
9、数据修改和设置
> df.iat[0,2]=3#修改指定行、列位置的数据值 >print(df) A B C D E F zhang 12013-01-013.03 test foo li 12013-01-022.03 train foo zhou 602013-01-033.03 test foo wang 582013-01-044.03 train foo > df.loc[:,'D']=[np.random.randint(50,60)for i in range(4)]#修改某列的值 >print(df) A B C D E F zhang 12013-01-013.057 test foo li 12013-01-022.052 train foo zhou 602013-01-033.057 test foo wang 582013-01-044.056 train foo > df['C']=-df['C']#对指定列数据取反 >print(df) A B C D E F zhang 12013-01-01-3.057 test foo li 12013-01-02-2.052 train foo zhou 602013-01-03-3.057 test foo wang 582013-01-04-4.056 train foo
10、缺失值处理
> df1 = df.reindex(index=['zhang','li','zhou','wang'], columns=list(df.columns)+['G']) >print(df1) A B C D E F G zhang 12013-01-01-3.057 test foo NaN li 12013-01-02-2.052 train foo NaN zhou 602013-01-03-3.057 test foo NaN wang 582013-01-04-4.056 train foo NaN > df1.iat[0,6]=3#修改指定位置元素值,该列其他元素为缺失值NaN >print(df1) A B C D E F G zhang 12013-01-01-3.057 test foo 3.0 li 12013-01-02-2.052 train foo NaN zhou 602013-01-03-3.057 test foo NaN wang 582013-01-04-4.056 train foo NaN > pd.isnull(df1)#测试缺失值,返回值为True/False阵列 A B C D E F G zhang FalseFalseFalseFalseFalseFalseFalse li FalseFalseFalseFalseFalseFalseTrue zhou FalseFalseFalseFalseFalseFalseTrue wang FalseFalseFalseFalseFalseFalseTrue > df1.dropna()#返回不包含缺失值的行 A B C D E F G zhang 12013-01-01-3.057 test foo 3.0 > df1['G'].fillna(5, inplace=True)#使用指定值填充缺失值 >print(df1) A B C D E F G zhang 12013-01-01-3.057 test foo 3.0 li 12013-01-02-2.052 train foo 5.0 zhou 602013-01-03-3.057 test foo 5.0 wang 582013-01-04-4.056 train foo 5.0
11、数据操作
> df1.mean()#平均值,自动忽略缺失值 A 30.0 C -3.0 D 55.5 G 4.5 dtype: float64 > df.mean(1)#横向计算平均值 zhang 18.333333 li 17.000000 zhou 38.000000 wang 36.666667 dtype: float64 > df1.shift(1)#数据移位 A B C D E F G zhang NaNNaTNaNNaNNaNNaNNaN li 1.02013-01-01-3.057.0 test foo 3.0 zhou 1.02013-01-02-2.052.0 train foo 5.0 wang 60.02013-01-03-3.057.0 test foo 5.0 > df1['D'].value_counts()#直方图统计 572 561 521 Name: D, dtype: int64 >print(df1) A B C D E F G zhang 12013-01-01-3.057 test foo 3.0 li 12013-01-02-2.052 train foo 5.0 zhou 602013-01-03-3.057 test foo 5.0 wang 582013-01-04-4.056 train foo 5.0 > df2 = pd.DataFrame(np.random.randn(10,4)) >print(df2) 0123 0-0.939904-1.856658-0.2819650.203624 10.3501620.060674-0.9148080.135735 2-1.031384-1.6112740.341546-0.363671 30.139464-0.050959-0.810610-0.772648 4-1.146810-0.7916081.488790-0.490004 5-0.100707-0.763545-0.071274-0.298142 6-0.2120140.8097090.6931960.980568 7-0.812985-0.000325-0.675101-0.217394 80.066969-0.084609-0.4330990.535616 9-0.319120-0.5328541.321712-1.751913 > p1 = df2[:3] > print(p1) 0 1 2 3 0 -0.939904 -1.856658 -0.281965 0.203624 1 0.350162 0.060674 -0.914808 0.135735 2 -1.031384 -1.611274 0.341546 -0.363671 > p2 = df2[3:7] > print(p2) 0 1 2 3 3 0.139464 -0.050959 -0.810610 -0.772648 4 -1.146810 -0.791608 1.488790 -0.490004 5 -0.100707 -0.763545 -0.071274 -0.298142 6 -0.212014 0.809709 0.693196 0.980568 > p3 = df2[7:] > print(p3) 0 1 2 3 7 -0.812985 -0.000325 -0.675101 -0.217394 8 0.066969 -0.084609 -0.433099 0.535616 9 -0.319120 -0.532854 1.321712 -1.751913 > df3 = pd.concat([p1, p2, p3]) #数据行合并 > print(df3) 0 1 2 3 0 -0.939904 -1.856658 -0.281965 0.203624 1 0.350162 0.060674 -0.914808 0.135735 2 -1.031384 -1.611274 0.341546 -0.363671 3 0.139464 -0.050959 -0.810610 -0.772648 4 -1.146810 -0.791608 1.488790 -0.490004 5 -0.100707 -0.763545 -0.071274 -0.298142 6 -0.212014 0.809709 0.693196 0.980568 7 -0.812985 -0.000325 -0.675101 -0.217394 8 0.066969 -0.084609 -0.433099 0.535616 9 -0.319120 -0.532854 1.321712 -1.751913 > df2 == df3 0 1 2 3 0 True True True True 1 True True True True 2 True True True True 3 True True True True 4 True True True True 5 True True True True 6 True True True True 7 True True True True 8 True True True True 9 True True True True > df4 = pd.DataFrame({'A':[np.random.randint(1,5) for i in range(8)], 'B':[np.random.randint(10,15) for i in range(8)], 'C':[np.random.randint(20,30) for i in range(8)], 'D':[np.random.randint(80,100) for i in range(8)]}) > print(df4) A B C D 0 4 11 24 91 1 1 13 28 95 2 2 12 27 91 3 1 12 20 87 4 3 11 24 96 5 1 13 21 99 6 3 11 22 95 7 2 13 26 98 > > df4.groupby('A').sum() #数据分组计算 B C D A 1 38 69 281 2 25 53 189 3 22 46 191 4 11 24 91 > > df4.groupby(['A','B']).mean() C D A B 1 12 20.0 87.0 13 24.5 97.0 2 12 27.0 91.0 13 26.0 98.0 3 11 23.0 95.5 4 11 24.0 91.0
12、结合matplotlib绘图
>import pandas as pd >import numpy as np >import matplotlib.pyplot as plt > df = pd.DataFrame(np.random.randn(1000,2), columns=['B','C']).cumsum() >print(df) B C 00.0898860.511081 11.3237661.584758 21.489479-0.438671 30.831331-0.398021 4-0.2482330.494418 5-0.0130850.684518 60.666951-1.422161 71.768838-0.658786 82.6610800.648505 91.9517510.836261 103.5387851.657475 113.2540342.052609 124.2486201.568401 134.0771730.055622 143.452590-0.200314 152.627620-0.408829 163.690537-0.210440 173.1849240.365447 183.646556-0.150044 194.164563-0.023405 202.3914470.517872 212.8651530.686649 223.6231830.663927 231.5451170.151044 243.5959240.903619 253.0138041.855083 264.4388011.014572 275.1552160.882628 284.4314570.741509 292.8419490.709991 ........ 970-7.910646-13.738689 971-7.318091-14.811335 972-9.144376-15.466873 973-9.538658-15.367167 974-9.061114-16.822726 975-9.803798-17.368350 976-10.180575-17.270180 977-10.601352-17.671543 978-10.804909-19.535919 979-10.397964-20.361419 980-10.979640-20.300267 981-8.738223-20.202669 982-9.339929-21.528973 983-9.780686-20.902152 984-11.072655-21.235735 985-10.849717-20.439201 986-10.953247-19.708973 987-13.032707-18.687553 988-12.984567-19.557132 989-13.508836-18.747584 990-13.420713-19.883180 991-11.718125-20.474092 992-11.936512-21.360752 993-14.225655-22.006776 994-13.524940-20.844519 995-14.088767-20.492952 996-14.169056-20.666777 997-14.798708-19.960555 998-15.766568-19.395622 999-17.281143-19.089793 [1000 rows x 2 columns] > df['A']= pd.Series(list(range(len(df)))) >print(df) B C A 00.0898860.5110810 11.3237661.5847581 21.489479-0.4386712 30.831331-0.3980213 4-0.2482330.4944184 5-0.0130850.6845185 60.666951-1.4221616 71.768838-0.6587867 82.6610800.6485058 91.9517510.8362619 103.5387851.65747510 113.2540342.05260911 124.2486201.56840112 134.0771730.05562213 143.452590-0.20031414 152.627620-0.40882915 163.690537-0.21044016 173.1849240.36544717 183.646556-0.15004418 194.164563-0.02340519 202.3914470.51787220 212.8651530.68664921 223.6231830.66392722 231.5451170.15104423 243.5959240.90361924 253.0138041.85508325 264.4388011.01457226 275.1552160.88262827 284.4314570.74150928 292.8419490.70999129 ........... 970-7.910646-13.738689970 971-7.318091-14.811335971 972-9.144376-15.466873972 973-9.538658-15.367167973 974-9.061114-16.822726974 975-9.803798-17.368350975 976-10.180575-17.270180976 977-10.601352-17.671543977 978-10.804909-19.535919978 979-10.397964-20.361419979 980-10.979640-20.300267980 981-8.738223-20.202669981 982-9.339929-21.528973982 983-9.780686-20.902152983 984-11.072655-21.235735984 985-10.849717-20.439201985 986-10.953247-19.708973986 987-13.032707-18.687553987 988-12.984567-19.557132988 989-13.508836-18.747584989 990-13.420713-19.883180990 991-11.718125-20.474092991 992-11.936512-21.360752992 993-14.225655-22.006776993 994-13.524940-20.844519994 995-14.088767-20.492952995 996-14.169056-20.666777996 997-14.798708-19.960555997 998-15.766568-19.395622998 999-17.281143-19.089793999 [1000 rows x 3 columns] > plt.figure() <matplotlib.figure.Figure object at 0x000002A2A0B10F28> > df.plot(x='A') <matplotlib.axes._subplots.AxesSubplot object at 0x000002A2A12FE7F0> > plt.show()
> df = pd.DataFrame(np.random.rand(10,4), columns=['a','b','c','d']) >print(df) a b c d 00.5044340.1908750.0016870.327372 10.4068440.6020290.9120750.815889 20.8285340.9859100.0946620.552089 30.1988430.8187850.7506490.967054 40.4984940.1513780.4175060.264438 50.6552880.6727880.0886160.433270 60.4931270.0092540.1794790.396655 70.4193860.9109860.0200040.229063 80.6714690.6121890.3749200.407093 90.4149780.0334990.7560250.717849 > df.plot(kind='bar') <matplotlib.axes._subplots.AxesSubplot object at 0x000002A2A17BD7B8> > plt.show()
运行结果
> df = pd.DataFrame(np.random.rand(10,4), columns=['a','b','c','d']) > df.plot(kind='barh', stacked=True) <matplotlib.axes._subplots.AxesSubplot object at 0x000002A2A3784390> > plt.show()
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
下一篇:Python实现TCP探测目标服务路由轨迹的原理与方法详解