脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch 更改预训练模型网络结构的方法

(编辑:jimmy 日期: 2025/1/19 浏览:3 次 )

一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层):

resnet_layer = nn.Sequential(*list(model.children())[:-2])

那么,接下来就可以构建我们的网络了:

class Net(nn.Module):
  def __init__(self , model):
    super(Net, self).__init__()
    #取掉model的后两层
    self.resnet_layer = nn.Sequential(*list(model.children())[:-2])
    
    self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3)
    self.pool_layer = nn.MaxPool2d(32) 
    self.Linear_layer = nn.Linear(2048, 8)
    
  def forward(self, x):
    x = self.resnet_layer(x)
 
    x = self.transion_layer(x)
 
    x = self.pool_layer(x)
 
    x = x.view(x.size(0), -1) 
 
    x = self.Linear_layer(x)
    
    return x

最后,构建一个对象,并加载resnet预训练的参数就可以啦~

resnet = models.resnet50(pretrained=True)
model = Net(resnet)

以上这篇pytorch 更改预训练模型网络结构的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:PyTorch之图像和Tensor填充的实例
下一篇:Pytorch Tensor的索引与切片例子
一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap