脚本专栏 
首页 > 脚本专栏 > 浏览文章

获取Pytorch中间某一层权重或者特征的例子

(编辑:jimmy 日期: 2025/1/19 浏览:3 次 )

问题:训练好的网络模型想知道中间某一层的权重或者看看中间某一层的特征,如何处理呢"htmlcode">

import torch
import pandas as pd
import numpy as np
import torchvision.models as models

resnet18 = models.resnet18(pretrained=True)

parm={}
for name,parameters in resnet18.named_parameters():
  print(name,':',parameters.size())
  parm[name]=parameters.detach().numpy()

上述代码将每个模块参数存入parm字典中,parameters.detach().numpy()将tensor类型变量转换成numpy array形式,方便后续存储到表格中.输出为:

conv1.weight : torch.Size([64, 3, 7, 7])
bn1.weight : torch.Size([64])
bn1.bias : torch.Size([64])
layer1.0.conv1.weight : torch.Size([64, 64, 3, 3])
layer1.0.bn1.weight : torch.Size([64])
layer1.0.bn1.bias : torch.Size([64])
layer1.0.conv2.weight : torch.Size([64, 64, 3, 3])
layer1.0.bn2.weight : torch.Size([64])
layer1.0.bn2.bias : torch.Size([64])
layer1.1.conv1.weight : torch.Size([64, 64, 3, 3])
layer1.1.bn1.weight : torch.Size([64])
layer1.1.bn1.bias : torch.Size([64])
layer1.1.conv2.weight : torch.Size([64, 64, 3, 3])
layer1.1.bn2.weight : torch.Size([64])
layer1.1.bn2.bias : torch.Size([64])
layer2.0.conv1.weight : torch.Size([128, 64, 3, 3])
layer2.0.bn1.weight : torch.Size([128])
layer2.0.bn1.bias : torch.Size([128])
layer2.0.conv2.weight : torch.Size([128, 128, 3, 3])
layer2.0.bn2.weight : torch.Size([128])
layer2.0.bn2.bias : torch.Size([128])
layer2.0.downsample.0.weight : torch.Size([128, 64, 1, 1])
layer2.0.downsample.1.weight : torch.Size([128])
layer2.0.downsample.1.bias : torch.Size([128])
layer2.1.conv1.weight : torch.Size([128, 128, 3, 3])
layer2.1.bn1.weight : torch.Size([128])
layer2.1.bn1.bias : torch.Size([128])
layer2.1.conv2.weight : torch.Size([128, 128, 3, 3])
layer2.1.bn2.weight : torch.Size([128])
layer2.1.bn2.bias : torch.Size([128])
layer3.0.conv1.weight : torch.Size([256, 128, 3, 3])
layer3.0.bn1.weight : torch.Size([256])
layer3.0.bn1.bias : torch.Size([256])
layer3.0.conv2.weight : torch.Size([256, 256, 3, 3])
layer3.0.bn2.weight : torch.Size([256])
layer3.0.bn2.bias : torch.Size([256])
layer3.0.downsample.0.weight : torch.Size([256, 128, 1, 1])
layer3.0.downsample.1.weight : torch.Size([256])
layer3.0.downsample.1.bias : torch.Size([256])
layer3.1.conv1.weight : torch.Size([256, 256, 3, 3])
layer3.1.bn1.weight : torch.Size([256])
layer3.1.bn1.bias : torch.Size([256])
layer3.1.conv2.weight : torch.Size([256, 256, 3, 3])
layer3.1.bn2.weight : torch.Size([256])
layer3.1.bn2.bias : torch.Size([256])
layer4.0.conv1.weight : torch.Size([512, 256, 3, 3])
layer4.0.bn1.weight : torch.Size([512])
layer4.0.bn1.bias : torch.Size([512])
layer4.0.conv2.weight : torch.Size([512, 512, 3, 3])
layer4.0.bn2.weight : torch.Size([512])
layer4.0.bn2.bias : torch.Size([512])
layer4.0.downsample.0.weight : torch.Size([512, 256, 1, 1])
layer4.0.downsample.1.weight : torch.Size([512])
layer4.0.downsample.1.bias : torch.Size([512])
layer4.1.conv1.weight : torch.Size([512, 512, 3, 3])
layer4.1.bn1.weight : torch.Size([512])
layer4.1.bn1.bias : torch.Size([512])
layer4.1.conv2.weight : torch.Size([512, 512, 3, 3])
layer4.1.bn2.weight : torch.Size([512])
layer4.1.bn2.bias : torch.Size([512])
fc.weight : torch.Size([1000, 512])
fc.bias : torch.Size([1000])
parm['layer1.0.conv1.weight'][0,0,:,:]

输出为:

array([[ 0.05759342, -0.09511436, -0.02027232],
[-0.07455588, -0.799308 , -0.21283598],
[ 0.06557069, -0.09653367, -0.01211061]], dtype=float32)

利用如下函数将某一层的所有参数保存到表格中,数据维持卷积核特征大小,如3*3的卷积保存后还是3x3的.

def parm_to_excel(excel_name,key_name,parm):
with pd.ExcelWriter(excel_name) as writer:
[output_num,input_num,filter_size,_]=parm[key_name].size()
for i in range(output_num):
for j in range(input_num):
data=pd.DataFrame(parm[key_name][i,j,:,:].detach().numpy())
#print(data)
data.to_excel(writer,index=False,header=True,startrow=i*(filter_size+1),startcol=j*filter_size)

由于权重矩阵中有很多的值非常小,取出固定大小的值,并将全部权重写入excel

counter=1
with pd.ExcelWriter('test1.xlsx') as writer:
  for key in parm_resnet50.keys():
    data=parm_resnet50[key].reshape(-1,1)
    data=data[data>0.001]
    
    data=pd.DataFrame(data,columns=[key])
    data.to_excel(writer,index=False,startcol=counter)
    counter+=1

2、获取中间某一层的特性

重写一个函数,将需要输出的层输出即可.

def resnet_cifar(net,input_data):
  x = net.conv1(input_data)
  x = net.bn1(x)
  x = F.relu(x)
  x = net.layer1(x)
  x = net.layer2(x)
  x = net.layer3(x)
  x = net.layer4[0].conv1(x) #这样就提取了layer4第一块的第一个卷积层的输出
  x=x.view(x.shape[0],-1)
  return x

model = models.resnet18()
x = resnet_cifar(model,input_data)

以上这篇获取Pytorch中间某一层权重或者特征的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:在Pytorch中使用样本权重(sample_weight)的正确方法
下一篇:pyenv与virtualenv安装实现python多版本多项目管理
一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap