浅谈Python 敏感词过滤的实现
(编辑:jimmy 日期: 2025/1/19 浏览:3 次 )
一个简单的实现
class NaiveFilter(): '''Filter Messages from keywords very simple filter implementation > f = NaiveFilter() > f.add("sexy") > f.filter("hello sexy baby") hello **** baby ''' def __init__(self): self.keywords = set([]) def parse(self, path): for keyword in open(path): self.keywords.add(keyword.strip().decode('utf-8').lower()) def filter(self, message, repl="*"): message = str(message).lower() for kw in self.keywords: message = message.replace(kw, repl) return message
其中strip() 函数 删除附近的一些空格,解码采用utf-8的形式,然后将其转为小写。
parse()函数就是打开文件,然后从中取各个关键词,然后将其存在关键词集合中。
filter()函数是一个过滤器函数,其中将消息转化为小写,然后将关键词替换成*。、
class BSFilter: '''Filter Messages from keywords Use Back Sorted Mapping to reduce replacement times > f = BSFilter() > f.add("sexy") > f.filter("hello sexy baby") hello **** baby ''' def __init__(self): self.keywords = [] self.kwsets = set([]) self.bsdict = defaultdict(set) self.pat_en = re.compile(r'^[0-9a-zA-Z]+$') # english phrase or not def add(self, keyword): if not isinstance(keyword, str): keyword = keyword.decode('utf-8') keyword = keyword.lower() if keyword not in self.kwsets: self.keywords.append(keyword) self.kwsets.add(keyword) index = len(self.keywords) - 1 for word in keyword.split(): if self.pat_en.search(word): self.bsdict[word].add(index) else: for char in word: self.bsdict[char].add(index) def parse(self, path): with open(path, "r") as f: for keyword in f: self.add(keyword.strip()) def filter(self, message, repl="*"): if not isinstance(message, str): message = message.decode('utf-8') message = message.lower() for word in message.split(): if self.pat_en.search(word): for index in self.bsdict[word]: message = message.replace(self.keywords[index], repl) else: for char in word: for index in self.bsdict[char]: message = message.replace(self.keywords[index], repl) return message
在上面的实现例子中,对于搜索查找进行了优化,对于英语单词,直接进行了按词索引字典查找。对于其他语言模式,我们采用逐字符查找匹配的一种模式。
BFS:宽度优先搜索方式。
class DFAFilter(): '''Filter Messages from keywords Use DFA to keep algorithm perform constantly > f = DFAFilter() > f.add("sexy") > f.filter("hello sexy baby") hello **** baby ''' def __init__(self): self.keyword_chains = {} self.delimit = '\x00' def add(self, keyword): if not isinstance(keyword, str): keyword = keyword.decode('utf-8') keyword = keyword.lower() chars = keyword.strip() if not chars: return level = self.keyword_chains for i in range(len(chars)): if chars[i] in level: level = level[chars[i]] else: if not isinstance(level, dict): break for j in range(i, len(chars)): level[chars[j]] = {} last_level, last_char = level, chars[j] level = level[chars[j]] last_level[last_char] = {self.delimit: 0} break if i == len(chars) - 1: level[self.delimit] = 0 def parse(self, path): with open(path,encoding='UTF-8') as f: for keyword in f: self.add(keyword.strip()) def filter(self, message, repl="*"): if not isinstance(message, str): message = message.decode('utf-8') message = message.lower() ret = [] start = 0 while start < len(message): level = self.keyword_chains step_ins = 0 for char in message[start:]: if char in level: step_ins += 1 if self.delimit not in level[char]: level = level[char] else: ret.append(repl * step_ins) start += step_ins - 1 break else: ret.append(message[start]) break else: ret.append(message[start]) start += 1 return ''.join(ret)
DFA即Deterministic Finite Automaton,也就是确定有穷自动机。
使用了嵌套的字典来实现。
参考
Github:敏感词过滤系统
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
下一篇:Python使用字典实现的简单记事本功能示例