python matplotlib库绘制条形图练习题
(编辑:jimmy 日期: 2025/1/19 浏览:3 次 )
练习一:假设你获取到了2017年内地电影票房前20的电影(列表a)和电影票房数据(列表b),那么如何更加直观的展示该数据?
a = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]
b = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]
from matplotlib import pyplot as plt import matplotlib """绘制条形图""" font = {'family': 'MicroSoft YaHei'} matplotlib.rc('font', **font) # 使支持中文 x = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",] y = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23] plt.figure(figsize=(20, 8), dpi=80) # 设置图形大小 # plt.bar(range(len(x)), y, width=0.3) # 绘制条形图,线条宽度 plt.barh(range(len(x)), y, height=0.3, color='orange') # 绘制横着的条形图,横着的用height控制线条宽度 # 设置字符串到x轴 plt.yticks(range(len(x)),x) plt.grid(alpha=0.3) # 添加网格 plt.ylabel('电影名称') plt.xlabel('票房') plt.title('票房前20的电影') plt.show()
效果图
练习二:假设知道了列表a中电影分别在2017-09-14(b_14),2017-09-15(b_15),2017-09-16(b_16)三天的票房,为了展示列表中电影本身的票房以及同其它电影的数据对比情况,应该如何更加直观的呈现数据?
a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362]
from matplotlib import pyplot as plt import matplotlib font = {'family': 'MicroSoft YaHei'} matplotlib.rc('font', **font) # 使支持中文 a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"] b_16 = [15746,312,4497,319] b_15 = [12357,156,2045,168] b_14 = [2358,399,2358,362] bar_width = 0.2 # 绘制多个条形图,这里不能大于0.3 # 让后两个条形,向后移动一个bar_width x_14 = list(range(len(a))) x_15 = [i+bar_width for i in x_14] x_16 = [i+2*bar_width for i in x_14] plt.figure(figsize=(20, 8), dpi=80) # 设置图形大小 plt.xticks(x_15, a) # 设置x轴刻度 plt.bar(range(len(a)), b_14, width=bar_width, label='9月14日') plt.bar(x_15, b_15, width=bar_width, label='9月15日') plt.bar(x_16, b_16, width=bar_width, label='9月16日') plt.legend() # 设置图例 plt.xlabel('电影名称') plt.ylabel('票房/万') plt.title('对比票房') plt.savefig('./02.png') plt.show()
效果图
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
下一篇:用Python实现二叉树、二叉树非递归遍历及绘制的例子