脚本专栏 
首页 > 脚本专栏 > 浏览文章

使用pandas读取文件的实现

(编辑:jimmy 日期: 2025/1/19 浏览:3 次 )

pandas可以将读取到的表格型数据(文件不一定要是表格)转成DataFrame类型的数据结构,然后我们可以通过操作DataFrame进行数据分析,数据预处理以及行和列的操作等。下面介绍一些常用读取文件的方法

1、read_csv函数

功能:从文件、URL、文件新对象中加载带有分隔符的数据,默认分隔符是逗号。

data.txt

a,b,c,d,name
1,2,3,4,python
5,6,7,8,java
9,10,11,12,c++
  data = pd.read_csv("data.txt")
  print(data)
  '''
    a  b  c  d  name
  0 1  2  3  4 python
  1 5  6  7  8  java
  2 9 10 11 12   c++
  '''

2、read_table函数

功能:从文件、URL、文件型对象中加载带分隔符的数据,默认分隔符为制表符("\t")。
data.txt的内容还是不变,我们可以通过指定read_table的sep参数来修改默认的分隔符。

  data = pd.read_table("data.txt",sep=",")
  print(data)
  '''
    a  b  c  d  name
  0 1  2  3  4 python
  1 5  6  7  8  java
  2 9 10 11 12   c++
  '''

3、读取没有标题的文件

data.txt

1,2,3,4,python
5,6,7,8,java
9,10,11,12,c++
  data = pd.read_csv("data.txt")
  #默认将第一行作为标题
  print(data)
  '''
    1  2  3  4 python
  0 5  6  7  8  java
  1 9 10 11 12  c++
  '''
  #设置header参数,读取文件的时候没有标题
  data1 = pd.read_csv("data.txt",header=None)
  print(data1)
  '''
    0  1  2  3    4
  0 1  2  3  4 python
  1 5  6  7  8  java
  2 9 10 11 12   c++
  '''
  #设置names参数,来设置文件的标题
  data2 = pd.read_csv("data.txt",names=["a","b","c","d","name"])
  print(data2)
  '''
    a  b  c  d  name
  0 1  2  3  4 python
  1 5  6  7  8  java
  2 9 10 11 12   c++
  '''

4、读取文件设置列索引

  #设置names参数,来设置文件的标题,设置index_col参数来设置列索引
  data2 = pd.read_csv("data.txt",names=["a","b","c","d","name"],index_col="name")
  print(data2)
  '''
      a  b  c  d
  name
  python 1  2  3  4
  java  5  6  7  8
  c++   9 10 11 12
  '''

如果不设置列索引,默认会使用从0开始的整数索引。当对表格的某一行或列进行操作之后,在保存成文件的时候你会发现总是会多一列从0开始的列,如果设置index_col参数来设置列索引,就不会出现这种问题了。

a、指定多个列为列索引产生一个层次化索引

一个值由两个列索引(key1和kye2)和一个行索引(value1或value2)来决定,可以将其理解为一个三维数据,三个点来构成一个坐标位置。

data.txt

key1,key2,value1,value2
a,a,1,2
a,b,3,4
b,c,5,6
b,d,7,8
c,e,9,10
c,f,11,12
 data = pd.read_csv("data.txt",index_col=["key1","key2"])
  print(data)
  '''
        value1 value2
  key1 key2
  a  a     1    2
     b     3    4
  b  c     5    6
     d     7    8
  c  e     9   10
     f     11   12
  '''

5、对于不规则分隔符,使用正则表达式读取文件

文件中的分隔符采用的是空格,那么我们只需要设置sep=" "来读取文件就可以了。当分隔符并不是单个的空格,也许有的是一个空格有的是多个空格时,如果这个时候还是采用sep=" "来读取文件,也许你就会得到一个很奇怪的数据,因为它会将空格也做为数据。

data.txt

name a  b c  d
python  1 2 3   4
java 5 6 7 8
c++ 9  10  11 12
  data = pd.read_csv("data.txt",sep=" ")
  print(data)
  '''
      name  a Unnamed: 2 Unnamed: 3  b Unnamed: 5  c Unnamed: 7   python  NaN NaN     1.0     NaN  2     3.0 NaN     NaN  
  java   5.0 6.0     NaN     7.0  8     NaN NaN     NaN  
  c++   NaN 9.0     NaN     NaN 10     NaN NaN    11.0  
  
      Unnamed: 8 Unnamed: 9  d 
  python     NaN     NaN 4.0 
  java      NaN     NaN NaN 
  c++      NaN    12.0 NaN 
  '''

使用正则表达式进行分割就可以避免上面问题的发生

  data = pd.read_csv("data.txt",sep="\s+")
  print(data)
  '''
     name a  b  c  d
  0 python 1  2  3  4
  1  java 5  6  7  8
  2   c++ 9 10 11 12
  '''

6、跳行读取文件

有的时候,你会遇到表格中的某些行数据你并不需要。可以通过skiprows参数来跳过这些行。

data.txt

#data.txt
name,a,b,c,d
python,1,2,3,4
#hello
java,5,6,7,8
#word
c++,9,10,11,12
  #通过skiprows参数来设置跳过行,从0开始
  data = pd.read_csv("data.txt",skiprows=[0,3,5])
  print(data)
  '''
     name a  b  c  d
  0 python 1  2  3  4
  1  java 5  6  7  8
  2   c++ 9 10 11 12
  '''

7、读取含有缺失值的文件

使用pandas在读取文件的时候,pandas会默认将NA、-1.#IND、NULL等当作是缺失值,pandas默认使用NaN进行代替。

data.txt

name,a,b,c,d
python,1,NA,3,4
java,5,6,7,NULL
c++,-1.#IND,10,,12
  data = pd.read_csv("data.txt")
  print(data)
  '''
     name  a   b  c   d
  0 python 1.0  NaN 3.0  4.0
  1  java 5.0  6.0 7.0  NaN
  2   c++ NaN 10.0 NaN 12.0
  '''

也许有的时候也许pandas默认被当作的缺失值还不能满足你的要求,我们可以通过设置na_values,将指定的值替换成为NaN值

  data1 = pd.read_csv("data.txt",na_values=["java","c++"])
  print(data1)
  '''
     name  a   b  c   d
  0 python 1.0  NaN 3.0  4.0
  1   NaN 5.0  6.0 7.0  NaN
  2   NaN NaN 10.0 NaN 12.0
  '''

也许有时候你还会遇到,你想将某个值替换成为NaN,但是可能有多个列都包含了这个值,而我们却不想替换所有的列,我们可以通过一个字典的形式来设置na_values参数,字典的键就是列索引,值就是你要替换的值。

data.txt

name,a,b,c,d
python,1,NA,3,4
java,5,6,python,NULL
c++,-1.#IND,10,,c++
  #将python和c++都用NaN进行替代,将所有的python和c++都替换成了NaN
  data1 = pd.read_csv("data.txt",na_values=["python","c++"])
  print(data1)
  '''
    name  a   b  c  d
  0  NaN 1.0  NaN 3.0 4.0
  1 java 5.0  6.0 NaN NaN
  2  NaN NaN 10.0 NaN NaN
  '''

只将第一列的python和c++替换为NaN

  #将python和c++都用NaN进行替代
  dic = {"name":["python","c++"]}
  data1 = pd.read_csv("data.txt",na_values=dic)
  print(data1)
  '''
    name  a   b    c  d
  0  NaN 1.0  NaN    3  4
  1 java 5.0  6.0 python NaN
  2  NaN NaN 10.0   NaN c++
  '''

8、read_csv和read_tabel的参数介绍

read_csv和read_table函数有很多的参数,下面对一些重点参数进行介绍。

参数:

path:表示文件系统位置、URL、文件型对象的字符串。

sep或delimiter:用于对行中各字段进行拆分的字符序列或正则表达式。

header:用作列名的行号。默认为0(第一行),如果文件没有标题行就将header参数设置为None。

index_col:用作行索引的列编号或列名。可以是单个名称/数字或有多个名称/数字组成的列表(层次化索引)。

names:用于结果的列名列表,结合header=None,可以通过names来设置标题行。

skiprows:需要忽略的行数(从0开始),设置的行数将不会进行读取。

na_values:设置需要将值替换成NA的值。

comment:用于注释信息从行尾拆分出去的字符(一个或多个)。

parse_dates:尝试将数据解析为日期,默认为False。如果为True,则尝试解析所有列。除此之外,参数可以指定需要解析的一组列号或列名。如果列表的元素为列表或元组,就会将多个列组合到一起再进行日期解析工作。

keep_date_col:如果连接多列解析日期,则保持参与连接的列。默认为False。

converters:由列号/列名跟函数之间的映射关系组成的字典。如,{"age:",f}会对列索引为age列的所有值应用函数f。

dayfirst:当解析有歧义的日期时,将其看做国际格式(例如,7/6/2012   ---> June 7 , 2012)。默认为False。

date_parser:用于解析日期的函数。

nrows:需要读取的行数。

iterator:返回一个TextParser以便逐块读取文件。

chunksize:文件块的大小(用于迭代)。

skip_footer:需要忽略的行数(从文件末尾开始计算)。

verbose:打印各种解析器输出信息,如“非数值列中的缺失值的数量”等。

encoding:用于unicode的文本编码格式。例如,"utf-8"或"gbk"等文本的编码格式。

squeeze:如果数据经过解析之后只有一列的时候,返回Series。

thousands:千分位分隔符,如","或"."。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:详细介绍pandas的DataFrame的append方法使用
下一篇:python3实现mysql导出excel的方法
一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap