网络编程 
首页 > 网络编程 > 浏览文章

Vue+tracking.js 实现前端人脸检测功能

(编辑:jimmy 日期: 2025/1/11 浏览:3 次 )

项目中需要实现人脸登陆功能,实现思路为在前端检测人脸,把人脸照片发送到后端识别,返回用户token登陆成功

前端调用摄像头使用tracking.js检测视频流中的人脸,检测到人脸后拍照上传后端。

后端使用face_recognition人脸识别库,使用Flask提供restfulAP供前端调用

实现效果如下图:

登陆界面:

Vue+tracking.js 实现前端人脸检测功能

摄像头检测人脸界面:

Vue+tracking.js 实现前端人脸检测功能

前端代码如下:

<template>
 <div id="facelogin">
 <h1 class="title is-1">{{FaceisDetected}}</h1>
 <!-- <p>{{FaceisDetected}}</p> -->
 <div class="content-cam">
 <div class="camera-wrp sec">
 <video width="320" height="320" ref="videoDom" id="video_cam" preload autoplay loop muted></video>
 <canvas width="320" height="320" ref="canvasDOM" id="face_detect"></canvas>
 <div class="control-btn"></div>
 </div>
 <div class="images-wrp sec">
 <!-- <p class="title is-5">Image taken</p> -->
 <div
  :class="`img-item img-item-${index}`"
  v-for="(image, index) in images"
  :key="`img-wrp-${index}`"
  :style="`background-image: url('${image}')`"
 ></div>
 </div>
 </div>
 </div>
</template>

export default {
name: 'facelogin',
data() {
return {
count: 0,
isdetected: '请您保持脸部在画面中央',
videoEl: {},
canvasEL: {},
images: [],
trackCcv: false,
trackTracking: false,
autoCaptureTrackTraking: false,
userMediaConstraints: {
audio: false,
video: {
// ideal(应用最理想的)
width: {
min: 320,
ideal: 1280,
max: 1920
},
height: {
min: 240,
ideal: 720,
max: 1080
},
// frameRate受限带宽传输时,低帧率可能更适宜
frameRate: {
min: 15,
ideal: 30,
max: 60
},
// 摄像头翻转
facingMode: 'user'
}
}
}
},
computed: {
FaceisDetected() {
return this.isdetected
}
},
created() {
this.changeView()
},

 mounted() {
 // The getUserMedia interface is used for handling camera input.
 // Some browsers need a prefix so here we're covering all the options
 navigator.getMedia =
 navigator.getUserMedia ||
 navigator.webkitGetUserMedia ||
 navigator.mozGetUserMedia ||
 navigator.msGetUserMedia
 this.init()
 },
 methods: {
 async init() {
 this.videoEl = this.$refs.videoDom
 this.canvasEL = this.$refs.canvasDOM
 await navigator.mediaDevices
 .getUserMedia(this.userMediaConstraints)
 .then(this.getMediaStreamSuccess)
 .catch(this.getMediaStreamError)
 await this.onPlay()
 },
 async onPlay() {
 debugHelper.log('onPlay')


 this.onTrackTracking()
 },
 changeView() {
 this.setTitle('刷脸登陆')
 this.setBackDisabled(false)
 this.setBackIcon('arrow_back')
 msgbus.vm.setBottomNavVisible(false)
 msgbus.vm.setBottomBtnVisible(false)
 msgbus.vm.setMsgInputVisible({ value: false })
 },


 onTrackTracking() {
 const context = this
 const video = this.videoEl
 const canvas = this.canvasEL
 const canvasContext = canvas.getContext('2d')
 let tracker = new tracking.ObjectTracker('face')


 video.pause()
 video.src = ''
 tracker.setInitialScale(4)
 tracker.setStepSize(2)
 tracker.setEdgesDensity(0.1)
 tracking.track('#video_cam', tracker, { camera: true })
 tracker.on('track', function(event) {
 const { autoCaptureTrackTraking } = context
 canvasContext.clearRect(0, 0, canvas.width, canvas.height)
 event.data.forEach(function({ x, y, width, height }) {
  canvasContext.strokeStyle = '#a64ceb'
  canvasContext.strokeRect(x, y, width, height)
  canvasContext.font = '11px Helvetica'
  canvasContext.fillStyle = '#fff'
 })


 if (!isEmpty(event.data) && context.count <= 10) {
  if (context.count < 0) context.count = 0
  context.count += 1
  //debugHelper.log(context.count)
  if (context.count > 10) {
  context.isdetected = '已检测到人脸,正在登录'
  //context.$router.push({ name: 'pwdlogin' })
  }
 } else {
  context.count -= 1
  if (context.count < 0) context.isdetected = '请您保持脸部在画面中央'
  //this.isdetected = '已检测到人脸,正在登录'
 }
 
 })
 },
 onDownloadFile(item) {
 const link = document.createElement('a')
 link.href = item
 link.download = `cahyo-${new Date().toISOString()}.png`
 link.click()


 link.remove()
 },
 onTakeCam() {
 const canvas = document.createElement('canvas')
 const video = this.$el.querySelector('#video_cam')
 const canvasContext = canvas.getContext('2d')


 if (video.videoWidth && video.videoHeight) {
 const isBiggerW = video.videoWidth > video.videoHeight
 const fixVidSize = isBiggerW "color: #ff0000">总结

上一篇:vue制作抓娃娃机的示例代码
下一篇:tracking.js实现前端人脸识别功能
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap