脚本专栏 
首页 > 脚本专栏 > 浏览文章

python 实现表情识别

(编辑:jimmy 日期: 2025/1/11 浏览:3 次 )

表情识别

表情识别支持7种表情类型,生气、厌恶、恐惧、开心、难过、惊喜、平静等。

实现思路

使用OpenCV识别图片中的脸,在使用keras进行表情识别。

效果预览

python 实现表情识别

实现代码

与《性别识别》相似,本文表情识别也是使用keras实现的,和性别识别相同,型数据使用的是oarriaga/face_classification的,代码如下:

#coding=utf-8
#表情识别

import cv2
from keras.models import load_model
import numpy as np
import chineseText
import datetime

startTime = datetime.datetime.now()
emotion_classifier = load_model(
  'classifier/emotion_models/simple_CNN.530-0.65.hdf5')
endTime = datetime.datetime.now()
print(endTime - startTime)

emotion_labels = {
  0: '生气',
  1: '厌恶',
  2: '恐惧',
  3: '开心',
  4: '难过',
  5: '惊喜',
  6: '平静'
}

img = cv2.imread("img/emotion/emotion.png")
face_classifier = cv2.CascadeClassifier(
  "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(
  gray, scaleFactor=1.2, minNeighbors=3, minSize=(40, 40))
color = (255, 0, 0)

for (x, y, w, h) in faces:
  gray_face = gray[(y):(y + h), (x):(x + w)]
  gray_face = cv2.resize(gray_face, (48, 48))
  gray_face = gray_face / 255.0
  gray_face = np.expand_dims(gray_face, 0)
  gray_face = np.expand_dims(gray_face, -1)
  emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
  emotion = emotion_labels[emotion_label_arg]
  cv2.rectangle(img, (x + 10, y + 10), (x + h - 10, y + w - 10),
         (255, 255, 255), 2)
  img = chineseText.cv2ImgAddText(img, emotion, x + h * 0.3, y, color, 20)

cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

以上就是python 实现表情识别的详细内容,更多关于python 表情识别的资料请关注其它相关文章!

上一篇:python 实用工具状态机transitions
下一篇:python 实现性别识别
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 站点导航 SiteMap