python 实现性别识别
(编辑:jimmy 日期: 2025/1/11 浏览:3 次 )
使用keras实现性别识别,模型数据使用的是oarriaga/face_classification的模型
实现效果
准备工作
在开始之前先要安装keras和tensorflow
安装keras使用命令:pip3 install keras
安装tensorflow使用命令:pip3 install tensorflow
编码部分
们使用OpenCV先识别到人脸,然后在通过keras识别性别,具体代码如下
#coding=utf-8 #性别识别 import cv2 from keras.models import load_model import numpy as np import ChineseText img = cv2.imread("img/gather.png") face_classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml" ) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_classifier.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=3, minSize=(140, 140)) gender_classifier = load_model( "classifier/gender_models/simple_CNN.81-0.96.hdf5") gender_labels = {0: '女', 1: '男'} color = (255, 255, 255) for (x, y, w, h) in faces: face = img[(y - 60):(y + h + 60), (x - 30):(x + w + 30)] face = cv2.resize(face, (48, 48)) face = np.expand_dims(face, 0) face = face / 255.0 gender_label_arg = np.argmax(gender_classifier.predict(face)) gender = gender_labels[gender_label_arg] cv2.rectangle(img, (x, y), (x + h, y + w), color, 2) img = ChineseText.cv2ImgAddText(img, gender, x + h, y, color, 30) cv2.imshow("Image", img) cv2.waitKey(0) cv2.destroyAllWindows()
以上就是python 实现性别识别的详细内容,更多关于python 性别识别的资料请关注其它相关文章!
下一篇:python遍历路径破解表单的示例